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0Cwj;lNAL Paaern 
OF POOR Q U W  

PREFACE 

This volume is the first of four which mnke up the Multisatellitc Attitude 

Detcrmini~ioii/O~~tical Aspect Bins Dctcrmimtion (h¶SAD/OABXAS) System 

Descriptio.1 and Opcrating Guide. The volumes a rc  

Volume 1 - Iutroduction and Analysis 

Volume 2 - System Description 

Volume 3 - Operating Guide 

Volume 4 - Program Listing and Sample Execution 

This volume me ins  an introductory exposition of the BISAD/OABL4S System 

and describes the analytic basis for the OABIAS subsystem. This includes a 

detailed discussion of the recursive estimator algorithm, each of the 12 state 

vector elements, and the 8 observation models used. 

Volume 2 describes the system flow and the componcnts of the MSAD/OABIAS 

System. The table Inh-gc description in this volume provides detailed infor- 

mation relating the operational displays on the IBM 2250 displily device to 

specific COMMON areas and subroutines within the MSAD/OABIAS System. 

Volume 3 contains a complete description of all MSAD/OABIAS NAMELIST 

control parameters, a description a 9  sample of all prinkd output unique to 

OABXAS md of cnch IBM 2250 griphies display, an exiphmion of and user 

response for 311 cr ror  messages generated by the MSAD/OABIAS System, 

and a listing of the Job Control Lmguagc (JCL) required to opemtc the system. 

Volume 4 contains the program listing with supplementary output .and line 

printer plots of a11 1DJI 2350 displays occurring during a sample esacution 

of thc program. miis voluinc py3scives, in sourcc form, the AISAD;OABIAS 

System as it is prcscntcd in this document. 
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This docurncnt dcscribes the I\.lull,isatcllite Attitudc Determination/Opticnl 

Aspcct Dins Dctcrminntion (i\ISAU/OABIAS) Sysicm, designed to determine 

spin axis oricntation and biascs in tlic alignment o r  performance of optical or 

Mrarcd horizon scnsors and Sun sensors used for spncccraft attitude deter- 

mination. BISAD/OABIAS uses any combimtion of eight observation modcls to 

process data from a single onboard horizon sensor and Sun sensor to determine 

simultaneously the ~ W Q  components of the attitude of the spacecraft, the initial 

phase of the Sun sensor, the spin rate, seven scnsor biases, and the orbital 

in-track error associated with the spacecraft ephemeris information supplied 

to the system. In sddition, the MSAD/OABIAS System provides a data simu- 

lator for system and performncc testing, an independent deterministic attitude 

system for preprocessing and independent testing of biases determined, and a 

multipurpose data prediction and cornFarison sy."tem. 

MSAD/OABIAS has extensive capqbilities for an interactive graphics mode and' 

makes use of the Graphics Executive Support System (GESS), formerly known 

as the Multisatellite Attitude Determination System (MUD) services. MSAD/ 

OABIAS is a multis3tcllite system capable of supporting, in its present form, 

the Small Scientific Satcllite (S ) , the Interplanetary Monitoring Platform (IMP) , 
the Atmosphere Explorer (AE) , and the Synchronous Metcorologicsl a te l l i t e  

(shls) missions or  any similar missions using optical or infrared horizon 

scanners and providing nttitudc d a b  that can be read by the MSAD/OABMS 

Sys tcm . 
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1.1 MOTA~AT!@h' FOR CIAS DE?fERhllNATION 

In the simplcsl. spin-std>ili:r.ed satellitc attitude dctermination problem, the 

state vcctor coiisists of only two clcmctifs v'.ich dcfine tho orientation of thc 

angular momentum vector in inertial space. In practice it is known that the 

presence of biases caused by thc misalignment of scnsors, o r  by misspecified 

hardware cliaracteristics, will cause Inaccuracies or  the complete breakdown 

of the simple attitude determination computations. This can lead to imccu- 

racies in attitudc control if the spacecraft spin axis orienMion cannot be dctcr- 

mined to within control system uncertainties, o r  worse, it cnn lead to attitude 

determinntiou blackouts during which computations yield no solution for attitude. 

Therefore, in  more realistic amlyses, additional elements, e. g. , sensor 

mounting angles which affect the accuracy of an attitude estimate, a r e  included 

in the state vcetor computation to provide improved knowledge of the values 

. 

of parameters. 

Accurate bias dctermination will permit more accnrate spacecraft attitude 

determination and controi i!ian could be accomplished purcly on the basis of 

prelaunc $1 mcasuremcnts. Highly accurate polaunch measurements not only 

are difficult and cxpensive to obtain but also may be invalidated by postlaunch 

changcs i n  thc spncccraft duc to thr I*mal or  mechanical shocks. Also, spnco- 

craft dynamic imbalance cffects which may appear as sensor biaseo a re  ex- 
pcnsivc to r ~ i n o w  coniplctcly bcforc lounch and may c h a q c  due to discrete 

events in lhc mission profilc, such 3s apogee motor firing or boom aeploymcct, 

Thc hlullisatcllitr! Atlilurlc I)ctcrmfnalion/Optical Aspcct Bins Dcterrnination 

( l l S ~ D / 0 A l :  IAS) Systcni in its prcscnt foriri providcs lhc nccesu:iry bias dc- 

termination :uid spin nxio attitudc rcfiiicnicirt for spin-stabilized spacecraft 

with sciisor confi:ur:i tioils wvhicli inclutlc Sun scnsors :Ind horizon scnsors. 
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Thc scnsor obscrv:hlcs arc accurntcly incdelcd nntl arc used in n rccursivc 

least-squarcs filtcr tcchniquc to cstimntc the clemcnts of a statc vcctor, which 

include thc two conipoiients of thc ?ttit!.dc; Sun scnsor azimuth, clevntion and 

plane tilt; karth scnsor azimuth and elevation; Earth sensor-triggering thresh- 

- old; and fixed time delays on scnsor triggerings. In addition, 3 state vector 

cornponcnt is uscd to co r rcd  the in-track orbital position, r.hich is the most 

likcly orbital e r ror  as well as tlic largcst single orbital uncertainty. 

The interactive graphics capabilities programmed into MSAD/OABrhS providc 

for a synergistic collaboration between analyst and computer. Generally, it is 

not feasible to solve for spin axis attitude, sensor misali,gunents, 3nd orbital 

position simultaneously. Analyst intervention is required to select the data 

span and to choose the variables to be solved using that data span. The com- 

puter program can best evaluate the numerical parameters and the f i t  to the 

data. Analyst scrutiny is required further to detect the possibility of unmodcled 

effects in the data, which may arise from the use of an early orbit estimate o r  

from anomalous sensor performance. 

MSAD/OABIAS is, therefore, an interactive data proccssing system for de- 

termining the maximum infurmation content of a spacecraft attitude sensor 

data set. 
v 

1.2 HISTORICAL BACI<GI~OUND 

Prior to the dcvclopment of the kISAD/OABIAS System, the Optical Aspect 

Attitude Dctcrmination System (OASYS) \vas used to evaluate biases. During 

mission support, biases \vcrc obscrved through large dispersions bctwxn 

single-framc dctcrmhistic nttitudc solutions or through large spnna ol data 

which yicldcd no solution. Several trial and cr ror  tcchniqucs ii-crc dcvetopcd 

to ;idjust i)i;u p;ir;imctcr on input to OASY'S to rcducc the attitude solution dis- 

persion and to improvc thc quality of thc fit to the datn. This lattcr adjustment 

w s  acconiylislictl by disp1:iying tirc raw d:ih supcrimposcd on a computer 
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prcdiction of tlic data h s c d  on thc systcm-dctcrmincd attitudcs and system- 

estimated binscs. In nddition, it was possiblc to dctcrminc fixcd-onglc binscs 

on thc Sun niglc, thc imdir angle, and thc dihcxiral angles cdculatca for input 

to thc diflcreiitial corrcction subsystem of OASS.  Biases which could not bc 

trcutcd a s  'fixcd-niiglc biascs due to thc Earth scnsor-triggering tlireshold (such 

as, the sensor-mounting angle bias or  tlic bias on the apparent radius-of the 

Earth) could bc dctermincd only by the manual trial and er ror  techniques. Al- 

though it was possible to develop considerable analyst expertise in recognizing 

what biases could be applied to fit the data, these techniques had several draw- 

backs. 

One drawback was that because the nadir angles or dihedral angles a r e  computed 
through nonlinear transformation of measurements, the biases of these angles 

were not necessarily physically meanin@d. Also, if more than one bias was 

present, manual trial and error techniques were too slow for real-time suppori 

and led to uncectainties about the uniqueness of the bias solution determined. 

MSAD/OABIAS was designed to address the above difficulties. It uses as input 
the true measurements received in the telemetry, and its interactive graphics 

control structurc is designed to speed operational and analytical processing. 

MSAD/OABIAS evolved from a study of analytical t2chniques for recursive 

least-squares Kalman filters (Reference 1). The preliminary design (Refer- 

ence 2) added a bias determination subsystem to the existing OASYS at the point 

at wluch the dilf;rcntinl corrcction subsystem 111s invoked. 

IUSAD/OABMS is 3 multisatcllitc systcm and has bccn used on data from tlic 

IntcrpIanctarg Monitoring Platform (nIP), the Small Scientific Sntcllite (S ), 
tlic Radio Astroiioniy Explorer-B {RAE-U) , tlic Atmosplierc? Explorer-C (AE-C) 

aiid tlw S~nclironous Blclcorologicd Silcllitc-A and -13 (SW-A, Thc uscr 

3 

I' 
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simply suppiics ;\IS.\D/OA%uIAS with 3 scnsor-inensurcnicnt data sct in a 

standard format. 1 

1.3 SYSTEM OVERVIEW 

All  intcractiw graphics display services and thc intcractivc control of program 

flow in MSAD/OABIAS a r e  accomplished through the Graphics Execiitivc Support 

Systcm (GESS). This system may be cousidcred an ovcrall executive control 

program or  a subsystcm of programs which supply graphics support to W A D /  

OABIAS at specified points in thc program flow. In addition to GESS, five main 

hmctioml subsystems exist in hlSAD/OABIAS. These a r e  

1. 

2. Data simulator subsystem (ODAP) 

3. 

4. 

5. 

Data selection and adjustment subsystem (OADRIV) 

Deterministic aititude determination processor subsystem (OASYS) 

Recursive least-squares filter subsystem (OABIAS) 

Data prediction and solution comparison subsystem (PLOTOC) 

.Also, an auxiliary routine (AECOPY) copies AE-C spacecraft data in a form 

readable by the AISAD/OABIAS System. Figure 1-1 shows these major func- 

tional subsystems in a pro,alrm baseline diagram hierarchy. OAMAIN and 

OPMAN are drivers and a r e  shown for the sake of accuracy. 

In the standard processing sequence, the GESS executive calls the system 

driver OADRIV. OADRIV either obhins the data to be processed from an 

OABUS measuremcnt daw set o r  causes the data simulator ODAP to be in- 

vokcd. In the case of AE-C dah, AECOPY must be invoked by OADRN to 

produce thc standard OABIAS measuremcnt data sct. OADRW then calls the 

dctcrniinistic proccssor O A S S  (through OP3IAlS), and thc dctcrministic so- 

lution is uscd :is an n priori cstinxitc in thc rccursivc lcast-squarcs filtcr 

!* 'Due to tiic csigcncics of tlic AE-C mission, this skindard fornlnt tsxs violtliccl, 
ncccssit;iting tlm dcvcloymcnt of a utility iutcrfacc routine. 
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subsystem 0MJ.AS. Thc uscr may call the d:tl:i prediction and gr:iphics\ solu- 

tion comparison subsystem YLUI'OC from OABLIS o r  asynchronortsiy iron1 . 

OASI'S. (Rcfcr to Volumc I11 for a thorough prcscnhtion oi thc mechanics of 

thc graphical processing options.') 

MSAU/Or\ELlS has multiplc options for accessing cyhemcris data which a r c  

required by a11 of thc subsystcms. Options arc available through the multi- 

srrtcllitc routine EPIIENG to read spacecraft ephemerides as well as lunar and 

solar ephcrnerides. The position of the spacecraft can be obtained from either 

the Dcfinitive Orbit Determination System @Ob9 file (Rcference 3) or the 

Goddard Trajectory Determination System (GTDS) file (Reference 4). It also 

can be intcrnally gcnemted through a simple orbit generator (OREGEN). The 

positions of thc Sun and the Moon can be obtained from a Jet Propulsion Lab- 
oratory (JPL) ephemeris file (Reference 5) or a SbWRD file (Reference 6). 

These positions likewise can be gener2ted internally by using SUN1 for the 

SM and ORBCEN for the Moon. Internally-gencrated ephemerides are useful 

for simulation purposes. The user is not constrained to use the same ephem- 

eris source simulating and processing data. 

1.3.1 OADRn' 

OADRW is the main control subroutine for the MSAD/OABIAS iystem. Opera- 

tionally, it serves as the data evaluation, election, and adjustment subsystem. 

Alt5ough thc res6 uf thc AISAD/OABMS System is limitcd to 200 frames of data, 

if corc stornbc is not limitcd, OADRIV can accept over 1200 frames. This 

ennblr rapid a i d  dchilcd data cmluation and sclcction by the opcrator. The 

OCdRIV capncity is limitcd to ayprosimatcly 1200 frames because the storngc 

capacity of tlic IUAI 2250 disphy dcvicc buffcr is limitcd. 

O,\Dl{I!' prwiLies 3 vnricty of options for sifting thc data, including pcriodic 

reading of tlrc data by cithcr tiinc o r  frame numbcr. Also, individual data 

p : q t o  in cilhcr plot or ch:trnctcr displays may bc flnmwdr noisc or  binscs 
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may bc iiddcd to tkc data (for craluntion or  tcsting purposcs), and ?he appro- 

priate intcrvnl miry be sclectcd for proccssing by thc attitude and bFas deter- 

mimtion subsystcms. 

The capability of tlrc uscr to cdit thc data cntcrcd in th- dctcrmination systems 

is crucial. Bccausc of the variable quality of attitudc data and thc subtle data 

rejection dccisioiis which must be made bnscd on howledge of thc hardware 

or  an understanding of spurious events (such as boom reflections), opcrator 

intervention in the execution of the program is required. Rejection of spurious 

data could be done by machine, but undoubtedly, this would require an undc- 

terminable amount of additional storage. 

.. 

M - 
1.3.2 ODAP 

ODAP, the data simulator subsystem in hlSAD/OABIAS, is a modified graphics 

version of the program described in Reference 7. It allows all system capabil- 

ities to be exercised in the simulation mode, which is essential to any system 

au large and coniplcx a s  MSAD/OABIAS. An attached simulator not only facil- 

itates system testing but also makes it feasible. The simulator is also used 

for prelaunch analysis and simulations. Data can be simulated for any mission 

conditions, and noise and biases can be applied and passed through to the atti- 

tude processors. This simulation-processing sequence can be repeated as 

- - 

c 

rIt%cssary during 3 single execution of the 

normally used during mission support and 

1.3.3 OASYS 

system. The data sirnulator is not 

can be ovcrhym when not in use. 

The OASYS subsystcm, an intcractive graphics version of the program de- 

scribed in  Rcfcrcncc 8,  sci-vcs n s  a dctcrministic attitudc detcrmin:ition 

proccssor within lISAD/OAlHAS. Each daLq frame consists of the Sun angle, 

thc Sun crossing timc, nntl tlic kirth-in and Earth-out triggering timcs, and 

can bc usccl to computc nttitudc 1)y four gcomctric mdlrods--Earth-in, Earth- 

out, Enrth widlh, aid mid-so:iu dihcdrnl aaglc. Thc nwrnge of thcsc singIc 
, 
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frninc solutions provitlcs nn initial estiinntc to the recursive lcast-squares filtcr 

in OA nI.4 S. 

In nddition graphicd plots of the Framc-by-framc attitudc solutions obtained 

through thc diffcwnt mcthods givc insight into whnt hinscs may bc prcscnt. 

The Earth widtt. mcthd,  lor example, is sensitive to n bias on thc apparent. 

angular radius of thc b r t h  and, in the evcnt of such a bias, yiclds results 

which a re  difkrcnt from thc mid-scnn dihedral angk method which is not sen- 

siti ve to this bias. As n chcck on the biases detcrmincd, the biases can be 

entered in OASYS and thc solutions obscrved graphically. Thc correct solu- 

tion will have thc effect of reducing thc attitudc dispersion ifi the single-frame 

solutions and minimizing the difference between the curves for the different 

solution methods . 
1.3.4 OABIAS 

OARIAS is the subsystem which determines the biases and from which the sys- 

tem as a whole takes its name. It is a recursive least-squares filter designcd 

to determinc spin ,axis attitude, senscr biases, and in-track orbit error (Refer- 

ence 2). The 12-component state vector is composed of the following elements: 

1 

1 

e X inertial component of the spin axis e 

e Y inertial component of the spin axis 

0 Spin rate 

e Phase of rotation mensurcd from the projcction of the sunline in 

tho spncccmft spiii plane 

0 Scvcn sciisor bins pnr:inictcrs 

e In-track orbit:il crror 

1-8 
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l'hc OAIjLIS subsystem uscs cight niotlcls (functions) of thc obscrwblcs which 

a rc  tlciwnclcnl on thc s a t c  vcctor clcmciits in thc filtcring schcmc. Thc pro- 

gram providcs graphical disphys. of thc state vcctor elcments on a point-by- 

point basis a s  w l l  3s displnys of statistical pammctcrs; c. g. , rcsiduals mid 

corrc1:ition cocfficicnts. Tlic uscr hns control of a11 input pammcters from 

the graphics dcsicc and can make multiple passes through the data to achieve 

an optimal solution. (Scc Section 1.4 for details of thc filter and the observa- 

tion moclcls.) 

1.3.5 PLOTOC 

The PLOTOC subsystem provides plots of the predicted and observed Earth 

widths and rotation angles. PLOTOC will display up to three predicted plo+s 

simultaneously. Tjyically this data will be displayed with the deterministic 

solution input to OABIAS and the OABIAS solution. The degree of f i t  to the 

data can then be determined visually. 

Parameters can be wried m n w l l y  to see the effect on the observed fit. 

Although these parameters--which include height of the atmosphere, oblate- 

ness coefficients, and orbital elements--are not in the state vector, their 

potential cffcct on the solution must be gauged. The PLOTOC plots clearly 

show unmodcled cffccts. PLOTOC provides a check on the valiiity of the 

OABIAS solutions and, because all GESS-generated plots can bc routed to 

hardcopy CalConip plots, a way to document the results. 

1.4 OADJAS RECLRSIVE LEAST-SQUARES FILTER 

1.4.1 Jntrotluction 

Thc OAUIAS rccursivc Icast-squarcs filtcr i s  bnscd on cight distinct obscr- 

\.nCion Illoclc~ls. Thcy nl'c 

0 hIodcl I--Sun anglc model r 
e hlodcl %-Sun sighting time model 
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Alodcl 3-Nadir vcctor projcction modcl 

Alodcl 4--H0l0iZC:I crossing time modcl 

Xlodcl 5--Siiii to Earth-in ai:d Sun to Earth-out dihcdral angle modcl .. 
e Modcl &-Earth width niodcl 

o Model 7--Smll targct modcl 

e Model 8--Sun to Earth niid-sc:x-. dihcdral angle model 

(See Section 1.4.2 for individual dcscriptions.) Any combination of thesc 

models may be used. However, statistically independent models should be 

chosen to obtain valid statistical uncertainties. For  e-ample, if the obser- 

vations available a r c  the Sun angle, the Sun sighting time, and the times at 
which the horizon sensor acquires and loses the disk of the Earth, a valid 

choice of statistically independent models vmuld be Mor. Is 6 ,  and 8. The 

addition of any other models, such as Model 5, to process the same observa- 

tions would yield unrealistically low uncertainties. 

Each observation model is formulated as a function of a subset of the 12 stnte 

vector components which include two components of the spin axis attitude, the 

spin rate, the initial phnss of the X axis (Sun sensor), and the following eight 

biases (seven sensor biases and one orbit parameter): 

1. Horizon sensor mounting angle bias (equivalent to a bias in the 

elevation of the sensor relative to the spin plane) 

2. Azimuth bins of the horizon sensor relative to the Sun scnsor on 

horizon- in tr iggcring 

3. Azimuth bins of thc horizon sensor relative to the Sun scnsor on 

horizon- out triggc ring 

4. Dins  on tlic ntgulnr rwlitts of ilic ccntr:il body (cquivnlcnt to a 

bcnsor-trfggcring lcrcl bins) 

5. Sun angle bi:is 
I' 

1-10 
* 



6. Sun scnsor 

7. Panoramic 

plmc tilt 

atiitudc scnsor phnc tilt (uscd lor RAE-I3 mission) 
. 

8, Orbital in-track c r r o r  

It is not possiblc to dctcrminc all of thc skitc vcctor clcments from any onc 

obscrvation modcl. Thc dcpcndcnce of the obscrvation modcls on thc state 

vcctor cornpoiiciits is sumninrizcd in Table 1-1. 

Within OABIAS, data i s  proccsscd one frame at a time. In order to facilitate 

analysis, options are availablc to update thc state vcctor after 

e . Each observation is processed 

e Each frame is processed 

e A spccified number of frames is processed 

If the option is taken to update the state vector on a frame-by-frame bash,  an 

additional option is available to iterkte through all data frames since the last 

updata. In thi. way, any desired degree of recursiveness i s  provided so that 

even a batch processing differential correction can be obtained. 

1.4.2 Olmxvntion Modcls 

Of the eight OABIAS observation models, two are associated with the Sun and 

six with the ccntral body (eithnr the Earth or  the Moon). The formulation of 

thcsc obscrvnblcs is summarized herc. (Sce Section 3 of tkis volume for ad- 

ditional dctnils.) 

e Modcl l--Sun a i q k  modcl. Thc observable for Modcl 1 is the Sun 

mglc rcportcd with thc dnta. The predicted value is dctermiticd 

by tlic positioii of tlic Sui1 (froin eitlicr n solm cphcmcris o r  an 

algcbr:il~ routinc) rdntivc to thc spacccr.ift, tho spin axis attitude, 

thc Sun sc)tsor planc tilt, and ttic Sun mglc bins. 
I' 
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o hlodcl %-Sun sighting limc motlci. Thc obscrv:ition fer blodol 2 is 

thc projcction of tlrc Sun vcctor onto a vector normal to the planc . 

containing thc spin axis and Sun- scnsor slit. The cxprcssion for 

. this projcction i s  evalualcd at thc Sun sighting time. Sincc tlic Sun 

must lie in tlrc plmc containing thc spin axis and the Sun sensor 

slit when it is sightcd, the observed valuc is always zero. 

0 Model S--h'adir vector projection model. The observation for 

hlodcl 3 i s  the projection of a unit vector along the optical axis of 

the horizon sensor onto the nadir vector. The observation is eval- 

uated 3t the time of a horizon crossing. - 

0 Model B--Horizon crossing time model. The observation for this 

model is  the projection of the horizon vector onto the normal to the 

plane containing the spin axis and the optical axis of the horizon 

sensor. It is evaluated a t  thc time of a horizon crossing. There- 

fore, 3s in the case of Model 2, the observed value is zero. 

e Model 5--Sun to Earth-in and Sun to Earth-out dihedral angle model. 

The two observables for Model 5 a re  the rotation angles from thO 

Sun to Earth-in crossing and from the Sun to Earth-out crossing. 

These observables a re  available directly from the data. 

0 Model 6--Earth wicith model. The observable for  Modcl 6 is the 

Earth width dihedral angle, defined as the Earth-out rotation angle 

minus thc Earth-in rotation angle. This model docs not depcnd on 

n Sun sighting. Thcrcforc, it may b~ used when thc Sun is not vis- 

ible o r  when a Sun sighting reference time is not avnilnble from the 

datn (as with thc AE-I: whccl-mountcd hoi-izon seiisors). 

0 llodcl ?--Sn~idl target modcl, This modcl Is a e d  ~vlicn thc ccirlral 

body is trcntccl ns a point soui*cc; c.g., tho RAE-I3 mission. Thc 
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.hscn*nblc is tlic scnsor mounting angle; i. c. , the nnglc bctwccn 

thc spin nsis of thc spncccrnft nncl tlic nadir vector. Thc nnrlir vcc- 

tor Is assumed to bc dong tho line of sight of the horizon sensor. 

0 Modcl S--Sun to Emth mid-scan dihcdrnl anglc model. The cb- 

servablc for this model is the dihcdrnl ;ngk from thc Sun to the 

mid-point between thc Earth-in crossing and the Earth-( 

For  a sphcrical Earth this would be the same as the dillY 

from the Sun to the center of the Earth. However, for an &late 

Earth the perpendicular bisector of the p e a t  circle between the 

Earth-in crossing and the Earth-out crossing generally does not 

go through the Earth’s center. 

“0 ss i ng . 
*Ingle 

Models 6 and 8 are  statistically independent whereas the two parts of Models 4 

and 5 are  not. Therefore, Models 1, 6, and 8 generally would be prefer- ed 

for processing over Models 1 and 5 or  Models 1 and 4. However, Models 6 

and 8 depend on both horizon crossings being available, whereas Models 4 and 5 

treat the two horizon crossings separately. Thus, Modal 4 o r  5 would be used 

when only a single horizofi crossing was available; e. g., a sensor operating in 

the visible range and triggering on one horizon crossing and the terminator. 
G 

I‘ 

. 
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-- SEC'I'ION 2 - SEXSOII ~~EscI~Il''rroxs 

This scction dcscribcs thc Sun eonsors and thc body-fixed horizon ( c ~  tcctors 

which u;u;illy arc  uscd onbonrd s:itcllitcs supportcd by the MtiiiD/O,lnIAS Sys- 

- tem. Brief dcswiplionn of thc \vhccl-niountcd horizon scrtnncr used by the 

AE-C sntcliilc ilild l h c  pnnoi*nmic nttitiidc scmner :PAS) uscd on thc RAE-13 

satell.itc also n e  included. MSIZD/OADIAS supportcd both the AE-C and tho 

RAE-B missions. The RAE-I3 PAS application necessitated OABIAS modifi- 

cations which are dcscribcd throughout this document. 

The geometry of the Sun-sensing and horizon-sensing operations is of primary 

signiiicance to thc aISA9/OABIAS System and, therefore, is emphasized. Dc- 
tailed physical and iiitcrnal characteristics of currently available sensors a re  

less important to hISAD/OADIAS and, .%cnce, a r e  not described in this docu- 

ment. 

2.1 SUN SENSOR 

Figure 2-1 shows thc main gcomctric featurec of tile Sun sensor system which 

has becn assumcd in ?he d e s i p  of MSAD/OABIAS. The sensorts field-of-view 

(FOV) is fan-shaped anu is indicated in Figure 2-1 by the heavy line. The FOV 

is centered about tbe face ads x from the satellite 

equatorial plnnc. A ccmmon value for the total FOV angle r is '28 degrees. 

Tlic sensor is nrountcd such lhnt its nonrinnl FOV plnirc contains .he satellite's 

spin axis S . (In Figurc 2-1, S is show lying in thc FOV plane.) Sun sensor 

systciirs conrnronly cnrploy two scnsoi's mounrcd with thcir face axis x on 

oppmitc sidcs of tho sntcllitu's cw:itoriiil plane. This arrangcniciit pcrmits 

full covcrngc of tlic cclcslitil sphcrc with two 12S-dcgrcc scnsors mid providcs 

rccluiid;rii~-~- ovcr thc s:itcllitcs's cqu;itorfnl rcgion. 

which is at an angle 
88 

h A 

88 

Tho io::. ,I of lhc satcllitc causcs thc St:n scnsor's FOV to swecp out a wlde 

belt on thc ccIcsti:iI sphcrc. In Ffpirc 2-1, this is thc nrea betwccn !hc two 

2-1 
. f  . . -  . 
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Figure 2-1. Sun Scnsing Ccomctry 
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hcwy ckishcd iincs. Thc sensor SCCS thc Sui1 oucc pcr spin pcriod if thc Sun 

lies within tliis bclt. Olhcrtvisc, it docs not see thc Sun at  all. The Sun sighting 

points occur whct thc rotating FOV planc crosscs the Sun vcctor U . A 

.. 
Each liiiic thc Sun is sightcd, thc Sui1 sensor systcm providcs i\ISAD/OABIAS 

with two picccs of information--the time t 

the clcntion angle a t  ts . The 

onbard sensor itsclf normally docs not establish t . It provides a reference 

pulse at each sighting which is used elsewhere in  the spacecraft. Normally, 

at which the sighting occurrcd and 

of thc Sun abovc thc  scnsor facc mis x 
S 

S ss 
S 

ts is a time tag which is placed 01) the telemetry data on the ground, The sat- 

ellite spin rate w is mmputed from the time intervals between successive 

Sun sighting pulses. The elevation angle 6 is used to determine the desired 

angle @ between thc satellitc spin axis 9 and the Sun vector v^. Neglecting 
S 

0 
sensor mounting alignment errors,  B = 90 -ts-a,. 
2.2 HORIZON DETECTOR 

Figure 2-2 shows the main geometric features of the horizon detector system 

which has been assumed in the design of MSAD/OABIAS. The sensor's FOV 
fs narrow and usually is either circular o r  square. In practice, the FOV diam- 

eter or side is commonly in the 1- to 1. +degree range. A hypothetical unit 

vector 2 is locsted in the center of the FOV; L^ is fixed in the satellite. The 

sensor mounting mgle y betwcen the wtellite's spin axis 3 and L is tailored 

to mission rcquircments. Satcllitcs which employ horizon scanners commonly 

include two o r  niorc units with diffcrcnt y angles. This providcs redundancy 

and permits incrcnscd covcmge throughout thc mission since t3e band swept 

out by thc horizon scnnncr i s  small m d  will miss the central body in some 

spncccrnlt oricnt:ilions. 

h 

A 
Thc rotation of thc satcllitc causes L to swccp out 3 small circlc on tbc cclcs- 

tin1 splwrc, indic:itcd in F i p r c  2-1 by thc dnshcd Ifnc. The horizon detcctor 

system provides output signds (1) at  "iii-timcs'l 
h 

when L crosses thc tIII ' 

2-3 



I' 

2-4 



boulidsry from tlic sky to thc ccnti-til 'body (Earth or Noon), and (3,- a t  "out- 

whcn L crosscs thc boundary from the ccntral body lo  the shy. timesDD t 

Them will be onc in-crossing and one out-crossing in each spacecraft revolu- 

tion during thosc portions of the k s s i o n  when the ccntrd body'lics witxn thc 

FOV loci bn thc cclcstial sphcrc (assuming intcrscction with only onc ccutral 

body). The outputs of t!ie horizon scanncr system used by MSAD/OABIAS are 
the horizon crossing times fHI and t 

crossing pmamctcrs measured by the onboard equipment actually are t HI s 
and tHo - ts . Ground operations convert these measurements to the inputs 

n 

I10 ' 

In most systcms, the horizon 
€10 - t 

and tHo required by MS.QD/OABIAS. 

Horizon detectors a re  designed to be sensitive to either visible light or to iu- 

frared radiation. For MSAD/'OABIAS operations, the si-anificant difference 

between the two types of sensors is that visible light sensors detect planetary 

disk terminators, while infrared sensors detect only the true planetary disk 

boundary. The OASYS portion of the MSAD/OABIAS System is capable of de- 

tecting and rejecting terminator crossings. 

2.3 AE-C it-WEEL-MOUNTED HORIZON SENSORS 

The AE-C spacecraft has one horizon sensor mounted on its body and two sen- 

sors that cffectivelg a re  mountcd on the spacecraft's momentclm wheel. In 

fact, the two wheel sensors a r c  mounted on the body of the spacecraft with their 

field of view nominally parallel to the spin axis of the momentum whcel. Each 

of thcsc sensors looks into i t  mirror mountcd oal the momentum whcel so th3t 

the motion of the wheel carries the sensor scan about thc celestial sphere. 

Within OADL\S, thc modeling of thc wheel scnsors is identical to that of: the 

body scnsor. Sincc thcrc is no wliccl-mounlcd Sun scnsor, only Sun nnglc data 

(from tlic boc!\--moiiiitcd Sun scnsor) and E:irtli width daLq arc nmilnblc for 

nttittidc clctcrmin~(ion. Thc modcling of tho whccl-sensor biascs is tlic samc 

ns for tlic body-sensor tinscs. IJo~w~*cr, bccausc thc bolomctcr associntcd 



with tlic wliccl-nrountcd sensors i s  mounted on thc body of tlic SI):icCcdt, an 

additioiml physical misnlignmcnt is possible. Spccifically, thc bolomctcr could 

be mounted off-:isis of the h l y  df tlic spacecraft and, thcrcfore, be misaligned 

with tlic asis of thc whccl. This \\.auld cause a sinusoidal oscillation in thc 

whccl-scnsor, Earth K!CU rht~ as UIC spin of the spscccraft carricd the whccl 

sensor axis in a small circle a b u t  the spin axis. The mcdeling appropriate 

to a misalignmcut of thc sensor axis is discusscd in detail in ReIerencc 9. 

L, 4 RAE-B PAWORAUIC ATTITUDE SENSOR' (PAS) 

Figure 2-3 shows the gcometry of thc PAS which was used on the RAE-B satel- 

lite. In this figure, F and By are small misaliepnent angles which will be 

discussed in detail in Section 3. 
I1 

One difference between the PAS system and the usual horizon detector is of 

primary significance to OABIAS; namely, the mounting angle Y 

line-of-sight vector 2 relative to the satellite's spin axis S is not constant. 

Instead, Y 

On RAE-B, the PAS sensor system supported the translunar phase of the mis- 

sion during which thc central body--the Moon--was sufficiently small to be 

approximatcd as a point source for attitude determination purposes. The 

angle y,  was advanced 0.7 dcgree per  spin revolution. These steps were 

actuated by rcfcrcncc pulses from a Sun sensor. The y, advance signal w a s  

Inhibited upon scanncr acquisition of o ccptral body. The angle y 

the ccntral body was ncquircd was the primary information which PAS provided. 

Thc timc variation of Y ou the PAS systcm madc the addition of the misnlign- 

mcnt nnglc f to thc OAIZIAS nxithcmnticnl i8cprcscnhtion of thc horizon 

dctcctor ncccssary. \\lien modcling thc morc coinmon body-fixcd horizon 

dctcctors, c 

of the nAS 
S 

h 

can be stepped in a predetermined manner. 
S 

at which 
S 

8 

I1 

is not nccdcd. lbo  ncw obscrvntion moddls--7 and 8-- were ti .- acldcd LO OAl3IAS for usc with  P;\S. 
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NOTE 2: 
e,, AND AT INDICATE MlSALlGUMEUT ANGLES. 

T, VARIES IN 0.7 DEGREE STEPS. 
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Figurc 2-3. RAE-B- PAS Ccometry 
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.. 3.1. IN”@L)UCTION 

This section contains thc matlicnintical algorithms uscd in the recursive csti- 

mator subsystcni (OLIDIAS) of the RISAD/OABIAS Systcm. Thc logic used in 

OASSS, thc dctcrministic attitude dctcrmimtion subsystem, is summarized 

in  Scction 3.2. Section 3.3 describes thc general recursive estimation tcch- 

dque  and its application to attitudb determination problems. The description 

covers the following three topics: 

1.’ The recursive and batch processing approaches with a comparison 

of their merits and drawbacks. 

2. The fuudamental recursive estimation algorithm on which OABIAS 

is based. (See Appendix B for the derivation of this algorithm.) 

3. T’E selection or computation of the observation weighting factors. 

The gencrd features of the implementation of the estimation algorithm in 

OABIAS are discusscd in  Section 3.4. This section describes the modifications 

made to thc algorithm presented in Section 3.3, denotes the main inputs which 

the program requires, and presents an introduction to the observables and state 

vector elcments which OABIAS employs. Also discussed are the options in 

OABIAS whic.11 enable thc user to influence i ts  performance as a recursive esti- 
mator, 1. e., thc s h t c  vcctor updating frcquency sclcction and thc itcrntfvc 

opcration options. 

The rcmatiiing portions of Scction 3 dcscribc tlic OADWS mnthcmntics in morc 

dctail. Scclioa 3.5 discusscs llic salcllitc and sc‘nsor gvometry assunicd mid 

cmploycd in tlic 0:1l%lS suLsystcm. This scctioii iiicliiclcs coordinate frnmcs, 

trmsform:it ion malriccs, and tlic ni:ithcmnticaI rcprcscntxqtion of tlic sciisors. 

It also pwscnts prccisc tlcfinitions of tlic clcnici?ts x in thc stntc vcctor S . a 

3-1 
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Each of tlic cight obscrwtion niodcls a?\.itil:tblc in OABWS a r e  discusscd in 

SCctioii 3.6. (SCC Aj>iX%idix A for ttic cquations of thc obscrvation partin: dc- 

rivativcs.) Scctions 3.7 through 3.9 covcr three additional topics: thc cow-- 

putntioii of 1hc ccntrnI body angular radius p- , the horizon crossing vcctor D , 4 

c; 

end thc wcigIil!ng factors w. . Finally, Scction 3.10 

matcrinl. 
J 

summarizes tlic Scction 3 

The notation uscd tbroughmt Section 3 is as follows. 

vectors are  represeuted by an overhead arrow (7) , 
General 3 Y 1 Cartesian 

and 3 x 1 Cartesian vec- 
A 

tors  of unit length a re  represented by an overhead caret ( V )  . The magnitude 

of a vector normally is designated by encasing it with two vertical lines (lT1) ; 
however, a simpler representation ( V )  is used in places where this can be 

done without ambiguity o r  confusion. Coordinate frame resolution is signified 

by superscripts (95 . 
More general (n x 1) column vectors a re  designated by an underline (XJ . 
Matriccs Ire signified by upper case letters with no underlines o r  overhead 

T symbols (P) . Superscript T designates the transpose of a matrix (G ) o r  

of a column vector 

trices and scalars, the scalars a r e  designated by lower case letters. For 

example, the elemcnts of matrix (A) a re  signified by lower case letters with 

subscripts (a ) . The dimensions of vectors and matrices a re  indicated be- 

neath the s p b c l s  the first time they appear in equations. 

T 
) . Where it is necessary to disfinguish between ma- 

ii 

A 
A sLqte vcctor cstinmte is indicntcd by an ovcrhmd carct (IC) to distinguish 

it from thc true stnlc vcctor (3 . This should cause no confusion with the 

unit vcctor note7tioii (V) , bccause thc correct mcnning should be obvious from 

the context of the cqu;itions. 

A 
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Y (g , S , t )  is a know~i algebraic csprcssion. Thc numci-ical vnlucs of thc 
'C 

elemcnts of I' 

Parenthcscs ( ) arc used in Section 3 dmost exclusively in this manner. Also, 

brackets [ 1 usually denote matrices and braccs 3 ,  vectors. Iiowever, all 

three--garenthescs, brackets, and braces-are used to enclose scalars. 

arc computed by inscrting valucs of g , X , and t into it. 
-C 

.. . 
Y 

! 

3-3 



mnrizcd in this section. (SCC Rcfcrcncc 8 for a dctnilcd dcscription of the 

mnthcmnticnl tcchniqucs used in O A S S .  ) 

Attitude computntious a r c  bnscd on borii.on crossings only; thcrefore, OAWS 

must identify and rcjcct tcrmimtor crossings. Thc sttitudc cnlculntion is 

basch on citlrcr a sin@-horizon crossing mcthod or  n double-horizon crossing 

method. OXSTS cnn process horizon crossings occurring on either the Earth 

or the Noon, and can dctcrmine which central body is br'7g observed, if nec- 

essary.. In nrost cases the system will function \without the benefit of an initial 

attitude estiaiate. 

3.2.1 Input to Determtiiistic Process 

Each input frame of preprocessed telemetry is assumed to contain the following 

information from a single spin p e r a d  of the spacecraft: 

o 

o The Sun sighting time 

The Sun angle, or angle between the spin axis and the Sun vector 

0 The horizon sensor "on,' time .- . 

0 The horizon sensor rtofftv time d 

o The spacecraft spin rate 

OASSS proccsscs each frame of data to identify and reject any horizon sensor 

triggcring which occurrcd st n tcrminntor crossing. For each rcnrnfning hori- 

zon scnsor triggering, thc systcw coinptitcs up to two possiblc dctcrnrinistic 

nttitudcs. Aftcr n block of ilsh has bccn proccsscd in this fashion, n block- 

avcmging technique is uscd to sclcct froin c m h  pnir of attitudes a singlc attitude, 

5u.+ 1113 t ;dl cil~c;scn n t ti 1 udc s rcni n i n :I pprosi iii:itcl,v constant throughout thc 

block. Wic choscn attitutlc vcclors arc thcn nw*cr:igcd. 



The foliowing :issuniptions a re  nccessarp for dctcrministic processing: 

1. 

2. 

3. 

T l ~ c  spacccrnft attitutlc is xmi iwd  to bc approximhtely constant 

during oiie Spill pcriod. Note, howevcr, that tlic sp;icccrnft position 

is not assumed to be constant during one spin period. 

Thc spicecraft spin rate is  assumed to be approsimatcly constant 

during one spin period. 

The spacccraft is assumed to be sufficicntly close to the Earth so 

that the vector from the Earth to the Sun is approximately parallel 

to the vector from the spacecraft to the Sun. 

The quality of the input sensor data and the accuracy of the initial attitude esti- 

mate determine the system logic used during any particular execution. For  

example, the status of the terminator must be checked for each scan. OASX 5 

must handle the following cases: when the Earth is fully sunlit, when the ter- 

minator is visible but is not present in the scan, and when the terminator is 

intersected by the sciisor scan. In all cases the logic is based on the compu- 

tation of attitudc from a single-horizon crossing, with either one attitude 

Gomputation o r  two, depending on whether the terminator was present in the 

scan. The ambiguities involved in  calculating attitude from n single-horizon ' 

crossing a rc  climimtcd by logic spanning successive data points. The as- 

sumptions a rc  macle tlmt the satcllitc attitude is changing slowly niid that suc- 

ccssivc nadir anglc calculations should yield nn unambiguous attitudc. Thc 

prcscncc of the tcrniiiintor in thc scan is dctcrmir,*A by a recursive tcchniyite 

utili zing d;i t 3 prcdiclo r m o d d  c' s. Siiigulw coiicli ti oiis , which yield :inibiguo:is 

rcsults for nttit*.itlc ovcr R short time spnn, exist both in the c a m  of a siinlft 

Earl11 :~nd in tlic cnsc of tlic prcscncc of thc tcriiiinntor. In thc Inttcr cmc, 

an a priori nttitudc must be uscd to rcsolt*c thc ambiguity. 

' 
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3.2.3 Ilc~lcrmiiiislic 1,o::ic ORIGINAL PAQE ?q 
OF POOR QUALIW 

3.2.3.1 Singlc Fr:imc Proccssiiig 

Attitudc computntion is c1r:ir:rctcrizcd by thrcc 1c.vcls: thc lcvcl of a singlc 

tclcmctry frnmc coiilniiiiiig one or two wlid horizon crossing triggcring timcs, 

the highcr levcl on which a full block of proccsscd framcs is avcragcd by tlie 

system, and Ihc lowcr lcvcl on which the siiiglc triggcriiigs a re  proc'esscd. 

For each central body under considerntion (Earth, Moon), the following func- 

tions a re  performed a t  the intermcdinte, single telemetry frame level: 

1. The lighting conditions on the central body a re  computed from 

ephemeris data. If the central body is dark o r  not visible, this 

triggering is rejected. 

If a terminator is visible, the terminator flag for this frame is 
set. If data a re  not to be included in attitude calculations while 

a terminator i s  visible, the triggeriug is rejected; otherwise, 

processing continues - 9  for the sunlit case. 

2. The attitude -*.ctermination routine, ATTDET, is called and as 

many as ttvu attitudes a r e  computed for this crossing. 

If ATTDET produccd no solution, thcre i8  no possible attitudz con- 
sistent with thc assumption that this triggering resulted from a sun- 

lit horizon crossing on this central body; thercfore, the crossing 

is rcjcctcd. 

If thc central body is fully sunlit, the procrossing of this crossing 

is coniplctc. l f  a tcrmin:ilor is visiblc, it must be dctwmincd 

wlicthcr this triggering rcsullcd from 3 terminator ci*ossing or 

a horizon crossing. 

d 

3. 

4. 

. . .. 



If n tcrminntor Is visibl,lc, it must ba dctcrmincd whctlrcr iL '3 intwscctcd by 

the spacccrnft sciisor scan, i. C. , whcthcr a particular triggering of tlic scnsor 

was in fiict a horizon crossing or  ;I tcrminntor crossing. The proccdure for 

this dctc&in:ition is a rccursivc one, utilizing ODAP (data simulator subsys- 

.. 
- 

(Rcicrcncc 7) modulcs ns tools. (Sec Rcfcrcnce 5 for background analysis 

.' ODAP, 

The routine TERCIIK is called once for each possible attitude compuled in sub- 

x .  !tine ATTDET. TERCHK calls the ODAP module with the computcd attitude 

and determines whcthcr a scan of the ceiitral body with this attitude would have 

produced rl sunlit horizon crossing for the in o r  out triggering, as required. If 

the computed atdtude is not zonsistent with the assumption that this triggering 

occurred at a sunlit  horizon crossing, this atetude is rejected. 

Note that it is possible that this test wil' fail to reject a terminator crossing 

when the attitude computed from LL terminator crossing is so far  from the true 

attitude that a scan with the erroneous attitude would give a sunlit horizon 

crossing at this triggering. When this occurs, one attitude is consistent with 

the assumption that this was a terminator crossing, and a second attitudc is 
consistent with thc assumption that the triggcring was a sunlit horizon crossing. 

Therefore, there is no dctermiiif stic procedure for recognizing this problem. 

* 

However, whcn thc problcm occurs, thc rcsultfng computcd attitcdc gcncrally 

has H Inrgc error. Siiicc thc error is Inrgc, the erroneous sttitudc is easily 

rccognizcd mid rcjcctcd in thc Mock-averaging modulo, SPINAV, assunling 

eftlicr nn a priori altitude o r  n large blockof data is available. 

3.2.3.3 Sfnglc-Ilorizon Crossing Cornpubtion 

Single-l~orizon crossing cvents arc proccsscd in the module A I'TDET. As miry 

a s  two possil)lc allilutlcs arc cnlcul:itc*tl for cnch cvcnt, cach with corrcsponding 
-.. . . 



nadir niiglcs mid dil~cclrn. .tiglcs, ATTDET i s  the kcy modulc in thc intcrfmmc 

proccssi~ig. (SCC Itcfcrciice 8 for a coriiplctc discussion of this computation.) 

Oicc cncli input xlcnictry frnmc has bccn proccsscd singly, thc bcst estimate 

of the attitudu must bc coinputcd bascd on thc single fr,me rcsults. Each input 

tclcmctry frnmc rcsults iu two output measurcmciit frsmes, ench of which may 

contniu zcro, oiic, or two attitudcs. The ambiguities which could no+ bo re- 
solved on n single framc basis now can be eliminated if the block of dab Y P  

lnrgc enough. 

The mod.Jle SPINAV processes a block of output frames to resolvo the amL-*i.- 

tties and dctcrmino the averagc attitudc. For each output frame containing tw; 

possible attitudes, SPIWAV must determine which of the attitudes, if any, is 

valid. Notc that in some cases bnth attitudes must be rejected as errfi+ieous. 

Tho asrumptirn inherent to SPINAV Is that attitude should rcmziin apprrvimately 

constant over thc duration 0' a block of data. Therefore, the anh ip i t i e s  should 

be resolved in such a way that the selected attitudes a re  a s  nearly cvnstant as 

possible. The following proccdure for reso1niAg the ambipit!es applies to thc 

most general case, in which each output frame containa ttw, attitudes and no 

a priori atff tude i s  available. 

Thc first atlitudc from the first output framc is sclcctcd as  8 trinl attitudc. In 

each otlicr output framc tho pair of attitudcs is cxilmined, and thc attitudc from 

that pair which is closcr to the t r i d  nttitudc (in clcgrces of arc-lcngth) is sc- 

Icctcd. Onc nttitutlc is sclcdcd in this mnnncr from e x h  output frnmc. 
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avcrtigc is computrd, wit11 cach \wiglit cqual to l/(nttilidc unccr?ninty in de- 

grccs of arc-lcngth) .) Thc rcsulliiig unit vector is thc mcmgc attituck for 

tho sct of atlituclcs sclcctcd. 

2 

Hon.c\*cr, thc sct inny iiicludc ccroucous attitudcs, resulting f n r n  nolsy or 
biascd chh, or  frcm tcrmiimtor crossings which could not be rcjcctcd. Thcre- 

fore, a rcsidu:il d i t  must he pcrformcd w i X n  SPXAVI. First, thc standard 

deviation of the set of attitudcs is computed as follows: Let the rcsidwl P. for 

each attitude be defined 3s the angte in degrees between that attitude vector and 

the average attitudc vector. Then the wighted standard deviation o is com- 

puted as follows: 

- 

1 

o= 
2 

JYCi 
- where o. denotes the weight for the ith frame and the subnations a re  taken 

1 

over all frames in  the block. 

The resulting valuc for o is the standard deviation of the set of attitudes, in 

i degrees of arc-length. Next, each attitude in the set which has a residual p 

greatcr than no , whcre n is an input parameter, is rejected. The dcfault 

value of n is 3 . The attitudcs not rcjectcd in this proccss are thcn re- 

avcragcd. A ncw standard deviation is computcd and the entire procedure is 

rcpcatcd until no further rcjcctions occur. 

Thcn SPNAV 1 rclurns \villi thc block-awl-agc nttitudc, thc standard dctdation, 

and thc iiumbcr of f m n c s  iiiclutlctl in thc final avcragc AI . Ncxt, SlVNAV 

c o i ~ i ~ ~ u t c ~ s  :I jichdiicss-of-fit pnn;imctcr, wliicb is intciitlcd to mc;isurc tlw :iniotait 

of scaltcr in  thc sct of sclcctcd attitutlrs. Thc goodness-of-fit piramctcr is 

ccpl  to cr/M . Kolc that this p:irniiictcsr t;tkcs iiito accoiriit both the final stmid- 

3rd tlcvint{on ;ind 11ic nunhcr of framcs inclwicd t i l  its computntion. 



Tlic a b o v ~  proccdurc describes thc steps followxi using thc first nttitudc from 

the first framc as n trial nttitudc. This proccdurc is rcpcatcd using cach atti- 

tude from cacli framc as a trial nttitudc. A running comptirison i s  maintained 

on thc gootlncss-of-fit paramctcr, nnd at each stcp, the blocl;-arcmgc nttitudc 

associatcd witii thc best fit is saved. 

The mernge nttitudc nssociatcd with tlrc best fi t  is d i n e d  further by-thc follow- 

ing itcrativc technique. Using thc average attitudc to resolve the ambi-jpities, 

the program selects one attitude from each pair, as above. SPNAVl is called 

to average the selccted attitudcs. The average obhined by SPHAV1 is used as 

a new averagc aid thc sequence is repeated. The process terminates when the 

set of attitudcs selected remains identical for two successive iterations. Con- 

vergence normally occurs in  two or three iterations. 

The following discussion is intended to clarify the theory behind the block- 

averaging procedure and explain its strengths and weaknesses. 

Consider a block of N output frames, with each frame having two attitude 

solutions. The ambi,guities can be resolved in 2 

attitude is selected from each pair. If a possibility exists that neither attitude 

in the pair is correct, then there a re  gN different ways to resolve the am- 

biguities. A goodness-of-fit parameter can bc defined which measures the 

amount of scattcr ir, the selectcd attitudcs and dcfines the llcorrectll way for  

*esolving ihc ambiguities ns the way which minimizes this parameter. An ex- 

haustivc search of thc 2 (or 3 ) choices ir thc only procedurc guarmtccd 

to gicld this corrcct solution. Clearly such n proccdurc is impractical unless 

N is vcry smnll. (Notc th;lt i f  N = 2 , the proccdurc is quitc practical. In 

fact, it corrcsponds lo  thc cnsc of two horizon crossings, cad! yicldiirg two 

attitudcs. In th:tt c:isc*, a check of the fottr I'ossiblc pirings will rcvcnl w;hic*?i 

pair of aititucics is optimnl. \\lien N = 2 , thc mcthod in SPINA\' rcduccs to 

thc smnc situation. ) II N is Ini-p?, soiiic' simplifyhig assumption nitist bc 

N 
different ways, if one 

N N 

3-10 



idroducccl. Thc nictliod in  SPKAV assuincb that at lcast onc of tlic attitiidus 

in thc block is close to thc final dcsircd block avci-agc, i. e., thc block wcrage 

which would b. c :wined if tlic nmbiguitics wcrc correctly rcsol\.cd. Clearly, 

it would bc wi-v i!ws\nl for a sct of attitucks to yicld an aremgc which did not 

lie close t o  m y  attiiwic iu thc sct. Thcrcfore, this simplifying assumption is 

reasonable, md in virtually a11 cascs i t  should yield the samc result as an ex- 

hust ive scarch of a11 2 cases. 

.. 

N 

The computation ti:nc required for SPINAV is approximately proportional to 

$ . ("hc nilnlber of trial attitudes is 2N . For each trial attitude, SPNAVl 

requires a computation time proportional to N .} Tbercfore, the block- 

averaging method is impmctical when N is largc. In practice it has been 

found that a block with 200 useful output frames requires several minutes of 

processing time on the IBhI S/360-95. In most cases such exhaustive proc- 

essing of a large block is unnecessary. A small subset of the block can be 

processcd, and the average of this block can be used as an a priori attitude. 

~ If m a priori attitude is available, it is used as a trial attitude, and the search 

for a trial attitude is climinated. The short iterative procedure described 

above can be used without searching for a trial attitude. The results in most 

cases will be identical to those which would be obtained using the complete 

method. 

Finally, no nicthod for rcsolring the ambiguities, not cvcn an eshaustit-e scarch 

of all 2 combin:\tioiis, will yield corrcct rcsdts in all cnscs. If the attitude 

is allowed to chnngL in  an arbitrn1.y niniuicr from one frame to thc ncxt, rc- 

solving ambi.guilics is clcnrly inrpossiblc, cvcn if  tlic &tit arc pcrfcct. Also, 

if thc nttituclc is coiistniit, but systcmntic or rnndom c r ro r s  in thc dntn cnusc 

thc ffcorrcct" :illitudo solutions 10 vary within thc block by an amount compa- 

rablc to tiic diffc~rcncc bctwccn Lhc two attitucks in cach yair, ambiguitics 

cannot bc rcsolvctl. 

N 
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3.2.3.5 Othcr Dctcrministic AttilwIc Computations 

OASYS pimvidcs four methods of iiKlc,wnclcnlly calculating attitude: onc using 

the Earth-in t r izcr ing,  one usitlg thc Earth-out triggcring, a'thid requiring 

both ti-iggerings to cnlcuhtc sn Earth t;-icith anglc and thcn a nndir angle, and 

a fourth using thc E;\rlh scan mid-time as computed from the two Earth trig- 

gcrings. This lattcr method is thc double-horizon ilihcdral anglc mcdiod. (SCC 

Refercricc S for thc mathematic31 details of tlicse methods.) 

3.2.3.6 Data Weighting 

An option is provided in OASI'S to camp-ite data weights to be used in the block-. 

averaging procedure. These dah weights 3re computed from user-specified 

tralucs for the uncertainties in the obse&ables. If the data weighting option is 

selected, five uncertainties are computer for each single-horizon crossing solu- 

tion: thearc-le ?crtainty in attitude, the uncertaintv in Yight asccnsion 

of the spin vector Lke uncertainty in declination of the Lyiu vector S , the 

uncertainty in thr? nmi: 'ingle, and the uncertainty in the dihedral angle. For 

each double horizon solution, the uncertainty in the nadir aagle and the uncer- 

tainty in the dihedral 3ngle are computed. 

In the block-averaging procedure (SPINAV), the unit spin vectors a r e  averaged 

with each spin vector assigned a weight equal to  l/(arc-length uncertainty in 

degrees) . 

b 

2 

In addition to providing wci:liting factors, OASI'S providcs a measure of thc 

unccrtninty in the block-nvcmgc attitude, by computing 3 weighted average of 

thc uiiccrttiintics for d l  frames. A wciglikd avcragc is computcd for thc un- 

ccrkiintics in nrc-lcnglh, a , and 6 . The wights  uscd in computing tlicsc 

wciglitcd avcragcs a rc  thc snmc weights uscd in the block-averaging procedure, 
2 l/(;u*c-lcigth uncci$:iinty in rlcppcs) . 
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The followwin;: tcchniquc i s  uscd to comptrtc unccrtnintics: Lct f bc :I fiinction 

dcscribi,lg sonic compulcd quantity in tcrms of ol~serwvd qt1:intitics. For cx- 

amplc, f might bc thc hriiction tyhich csprcsscs the right zscension of a unit 

~ c t o r  along the spin iLyiS a! in tcrms of thc obscrnblcs  B , y , P , A , and t . 

where B = Sun angle 

y = sensor mounting angle 

p = effective angular radius of the Earth 

A = rotation angle from Sun crossing to horizon crossing 
J. R (t) = spacecraft position at time t 

Strictly spesking, not all of these quantities a r e  directly observed. For ex- 

ample, the Sun angle /3 is computed from a coded field in the telemetry, and 

the rotation angle A is computed from a spin rate and crossing times, which 

in turn a re  computed from clock counts in the telemetry. However, this set 

of observablcs has the advantage that uncertainties in each observable may be 

conveniently estimated and treated as conshat, a t  least over a single block of 

. 

data. 4 

Stmdard e r ror  analysis yields the following expression for the uncertainty 

in a: 

3-13 
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This analysis is based on tlic assumption that the e r ro r s  in thc obscrvables a r c  

normally distrihtcd,  uncorrelatcd c r ro r s  which arc small enough so that the 

function f may be treatcd a s  linear, i. e. ; thc partial differentials &Y/@ , 
etc., may bc treated 3s constant. 

Given that the function can be treated as linear in the desired region, the de- 

rivatives nmy be computed numcrically, as follows: 

n 

This technique is easily applied to any function f which can be evaluated nu- 

mer  ically . 
In actual implementation the method works a s  follows: the attitude, the nadir 

angle, and the dihedral angle a re  computed using the observed data. Then the 

specified uncertainty in the Sun angle is added to the observed Sun angle, and 

the attitude, the nadir angle, and the dihedral angle a re  re-computed, using 

the perturbed Sun angle with all other parameters a s  before. The changes in 

attitude, nadir angle, and dihedral angle a re  saved. Next the specified uncer- 

tainty in some other parameter is added to the observed value, 2nd attitude is 

computed again, using a perturbed value for only one observable a t  a time. 

After each observable has been perturbed in this manner, the uncertainty in 01 , 
for examplc, is computcd as 

whcrc Aa. - llrc clintigc in 01 rcsulling froni a pcrturbntion to the ith 
obscrvnbl c 

I 

3-14 

1 



ORIGINAL PAOE I8 
OF POOR QUALITY 

Note that for thc unccrtainty in time t thc ephcnicris routincs must bc cnllcd 

to obtain the position n t  the pcrturbed time t 4. u . This cr'ror in timc cfrii be 

used to reprcsent both the effect. of an :ibsolutc timing error (i. cc , the absolute 

times from the attitudc tclcmctry a rc  not consistent with thc nbsolutc timcs 

used for orbit dcterniination) and thc cCfcct of nn in-track orbit e r ro r  of a givcn 

time magnitude (i. e. , thc spacccmft is 30 seconds ahead of or behind thc orbit 

tape prediction). 

t 

This method of uncertainty computation breaks down if attitudc cannot be coni- 

puted from the perturbed data (i. c., if .the function f (,f3 -+ cr y ,  . . .) is unde- 

fined), In this case, the funntion f is certainly not linear over the region 

f l  to @ + crb , because f is not defined over the entire interval. When this 

condition occurs, OASYS assigns a very large uncertainty (99999.0 degrees) 

to the attitude, mdir  angle, and dihedral angle, resulting in a very low weight 

for the frame. This is a reasonable action in  most cases, because the uncer- 

tainties are  generally very large in the region close to the point a t  which attitudc 

B' 

. becomes undefined. That is, for the functions under consideration, the deriv- 

atives go to infinity at  the point where tho function becomes undefined. (This 

is true, for example, for the square root, a r c  sine, and a rc  cosine functions, 

all of which are  involved in the attitude computations. These a re  also the 

only functions which can cause the attitude computation to be undefined.) The 
problem of pcrturbcd data yielding no solution can always be avoided by using, 

sufficicntly small values for the cnccrtninties in thc obscrvabxes. For example, 

i f  the unccrtniiity in cnch obscrvablo is rcduccd by a factor of 10, the rclntirc 

wights  will rcm:iin accurate, and the probability that the pcrturbed data will 

gicld no solution is rcduccd. The user must then remember to multiply the 

coniputcd ntliturlc unccrtnintics by 3 factor of 10 to obtain re3listic valucs. 
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3.3.1 - Corn 1x1 ri son T k  t iwcn Recurs i vc Procc ssi ng and 133 tc h Procc s s i ng 
Estimation 3 I c t Iiocls 

This section coiiipiircs, nonmnthcmnticnllp, the batch proccssing and rccur- 

sive processing nictliods for estimating the time-invariant statc vector of 

a system using, 2s input, a block of noisy obscrvations y. obtaincd on that 

system. Thc discussion of batch processors infers  the usual least-squares 

differential correction (DC) algorithm employed, for example, by the GCONES 

program and GTDS. The discussion of recursive processors infers the usual 

nonlinear recursive least-squarcs algorithm cmployed by OADIAS. 

1 

With the batch processing algorithms, all observations y in 1 are, in effect, i 
handled simultaneously. Batch processors which take into account observation 

geometry nonliii3arity (to be defined in Section 3.3.2) require an a priori esti- 

mate 2 
new estimate & until the complcte set of observations y has been processed, 

of 3 to s tar t  the operation, A batch processor does not provide a 
h 

-0 

With the recursive processiug algorithms, 

mutually exclusive subsets. For example, in a system such as OABIAS which 

processes the observations one a t  a time, the subsets a re  the scalar observa- 

tions y 

sequentially. Updntcd and improvcd estimatcs are  obtained continunlly 

during the proccssing operntion. In thc most common opcrating modc, 

updatcd rter proccssing each y. , and this updated value is employcd in com- 

putiiig tlic pnrtid dcrivativcs G rcquircd for proccssing the ncxt obscrvntion 

is separated into a number of 

They usually a re  arranged in chronological older and are  processed 
A 

i '  

A 
is 

I 

n 
, In olhcr niodcs, S mny bc upd:itcd- less oftcn, e. g. , as iilfrcqucntly yi+ 1 

as alicr tlio 11111 dah sct 1 is proccsscd. \\lien tlic obscrvntion gcoinctry is 

nonlinc:ir, tlio S updating frcqiioicy is ol sonic' significincc, bccmsc its in- 

flucncc on ihc Gs nffccts llic r1yn:imics of tlic filter. Rccursivc proccssors 

al\vnys rcquirc :in :I priori cs1ini:itc S 

h 

h 
to skirt tlic proccssing operation. 

-0 
._ 
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An itcralivc proc-cssing tcchniquc is onc in which Ihc obscrvntion sct 

rcproccsscd scvcral tiiiics. Tlic st:itc rcctor cstiinntc >; obtaincd at ::IC end 

of cach complctc 1x1s~ of I' through thc proccssor is uscd as the i n i t h l  input 

for the following pnss. Itcratiw proccssing is uscfd in ;niproving thc accuracy 

is 
A 

of thc filial cstimatc whcn thc result obtaincd by only n singlc pass would bc 

depadcd by thc noiiliiicnrity in the obscrvation equations and the e r ror  in the 

a priori cstimite X . In practice, batch proccssors uscd for attitude deter- 

d m t i o n  problcms usually must bo operated itcratively to yicld trustworthy 

A 

-0 

results; the proccdure is callcd diffcrcntid corrcction (DC). The naturc of 

the recursive proccssing algorithms makes iterative operation of recursive 

processors less essential in attitude determination problems, because thc 

estimatc X is continually being updated: However, iterative operation of 

recursive processors is possible, often advantageous, and sometimes nec- 

esrary. 

A 

Recursive estimation algorithms have a number of potential operational ad- 

. vantages over batch processing algorithms. The main ones are as follows: 

1. Recursirc processors handle only a small number of observations 

at a time. Therefore, because they need to store only il small 

numbcr of observations at any one time, recursive processors 

can require less computer core space than batch processors and 

have no a priori limit on the size of the data arrays they cnn proc- 

ess. 

2. Rccursivc prcccssors arc  bcttcr suited for real-timc opcrations, 

bccmsc thc opcration nccd not be delayed until a block of obscr- 

vations is accumulatctl. Individual obscrvntions can bc proccssetl 

immcdintcly, thus proridinji imnicdintc cstinintcs of thc :ittitudc 

sbtc of tlic sp:icccr:ift with various mcasurc's of thc nccur;icy of 

t 1x1 I c sli 111 :It c.  i' 

. - -  
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proccssor ;illow tlic opcr:ito- to \v:itch thc conscrgcnce of tlic solu- 

tions and dcvclop an intuitive fccling for thc quality of thc solutioiis 

that i s  not possi’-lc with thc single output of t.hc bitch proccssor. 
.. 

- Thc potentiality for thc rcal-timc opcration of a rccursivc proccssor is dctcrrcd 

when itcrativc processing is requircd. Also, both the rcnl-time and core stor- 

age advantagcs of rccursivc proccssors can vanish if  prcprocessing of the input 

data is required or if storing the input data in large blocks is necessary rathcr 

than passing the data to the recursive processor on receipt. This has been the 

case with MSAD/OABIAS. Hence, the development of an intuitive feeling for 

the quality of the solctions has been the main advantage of recursive processing 

over batch processhg in the OAI3IAS application. 

The principal advantage of batch processors is stability. Because recursive 

processors can updatc their state vector estimate X continually (aft.cr proc- 

essing each y. 

h 

if necessary), in iterative operation, they tend to converge 
1 ’  

h 
. to a final 5 estimate faster than batch processors. Because batch processors 

h 
update 3 only at thc end of each iteration they are more likely to converge to 

a valid solution in difficult prGbkms, i.e., to be mort? stable. In a recursive 

processing operation, however, updating only at the end of each iteration 

will overcome this difference and yield dynamics virtually identical to that of 

batch proccssing. 

A 

In addition to stability, batch proccssors have two other potential advantagcs 

ovcr rccursivc proccssors 

essors gcncrnlly r c q u m  fcwcr numerical opcrations than recursive processors, 

to proccss :I blocl: of d:rt:i tlicy teiid to run  lastcr. Sccondly, batch proccssors 

can Lqlic into :iccou~it tlic cffwts of corrclnted ci-rors in y. bctter thnn rccur- 

sivc proccssors. This cnpnbility. ho\wwr, is not utilized often and, thcrefore, 

Thc first is running speed. I3ecausc batch proc- 

1 

cnii i*:ircly IJC c*onsidi*i.cd :I s ipii iv:i i- it  :id\~:iiil:rgx*. !* 
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This scclioii :liscussc!s tlic conccpt of obscr\-atiun cquatioilr and gcoxnctry non- 

linearity, dcfincs some tcrminology to l)c uscd in thc rcm:iiiidcr of Section 3, 

and prcsctits nrld tliscusscs tlic furn~lanicntal recursivc cstiniatioii dgorifhm on 

which 01i131.-'LS is klscd. 

Rccursivc cstinintors rcquire a sct of obscrvations 

dividual scnlar observations v .  bc dcsigmtcd as y. whcrc j = 1, 2, . . . , p . 
Associated with each observation . j is an algebraic expression y 

which ciiablcs the value of y to be predicted. y . (S , t )  is a mathematical 

model of the satellite and its pertinent sensors. Thus, for each observation f 

there is an equation of the form 

as inputs. Lct the in- 

I 
(X , t) c i  

f CI 

where t is the time at which observation j was obhined, and y is the actual 
j I 

. "measured" raluc of the observation. v. is an er ror  term which must be in-. 
1 

cludcd to make the two sides of the equation balance. v results from the e r ro r  
J 

in the y measurement and from modeling errors ,  i. e., from approximations 

iu the y (s , t) expression. The actual value of v of course is unlmotwi. 

In some problcnis Equntion (3-1) can be placed in the fcrm 

1 
cj I 

whcrc a and I ) .  arc const~iit or tinic-dcpcdcnt cocfficients, but arc  not -i -1 
cxpljcit Tunc-rioiis of . 

!' 
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In tlus cnsc it is said that tlic obsci-\,:ition gcornc:r.jp is lincnr. Nicn Equa- 

tion (3-1) c:iniiot bc p1:iccd in thc above form it is said that the observation 

gcomctry is  nonlincnr, Rccursive estimation problcins in which the observation 

gomctq. is lilicnr tend to prcscnt fcwcr difficulties thnii those in which i t  is 

nonlincar bcc.;usc thcrc is a fully dcvclopcd and rigorous body of lhcory for 

generating mathcni:iticn~~y optimal rcsults in thc'lincar case. Unfortunately, 

the observa tion gcor-ictry in nttitudc dctermil:ati oa problems usually is suffi- 

ciently noiilincnr that its cffect must be taken into account in the basic algo- 

rithms of the r'ecurs;ve system and/or compensated for by ad hoc procedures. 

.. 

It  is necessary at  this point to define some .elms which will be used in flie 

remainder of Section 3. This terminology is nearly identical to that used in 

Reference 1. The word ~lrr.casurementsvt will be used wheii referring to the 

indepcndent inputs m supplied, via telemetry and preliminary ground proc- 

essing, to tho overall attitude determination system. To be specific, the 

measurements supplied to MSAD/OABIAS a re  the Sun angles @ , Sun sighting 

times ts , central body-in horizon crossing times , and central body-out 

horizon crossing tinies t The word flobservnblesft will be used when re- HO 
ferring to the basic \'ai .des  which serve a s  inputs to the recursive estimator 

portion of the attitude detcrmination system. The terms Veal  .observationstt 

a 

or merely "observationstf y will be used to designate the measured values 
1 

of the obscrvnblcs. The term "model observationsfr will be used to designate 

the prcdictcd vducs y 

bccause y 
CJ 

of thc obscrvations. The word flmodel*f is used here, 
cj  

is obtnincd using mnthcniaticnl modcls ol tlic satcllite :tnd its 

(1s , t) is the nlgcbraic expression which is ' ycj sensors. hi Eyuntion (3-1) 

used to compute y . 
In most cstinintion stuclics, n distinction is not mntlc hctwccn mcnsurcmcnts 

m mid obsCr\.iltiotis y . Instcnd, tllc oL~cr\.:iblcs a1.c considcrcd to bc tlic 

b:isic p:ir:itiwtci-s uhic- l i  :iiw nicisuwd. A distinction is being m:iJc in thc 

cj. 

01 J 
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those used b ~ .  OASYS/CCOXES illid OASSS/GIUX!RS) arc  iiot the basic mcasurcd 

paramctcrs t , Thc direct use of event times, such ns t s ' tIII ' 410 , 9 '  

ns oLsci- vablcs is difficult bccausc of the difficulty in predicting 
I f 0  ' sir , and t 

tlrcsc tiiiics \is algcb-aic mcjdcls as is rcquircd by Equation (3-1). Thc cnsicr 

and niorc usud approash is to convert t 

processing) into pnrnnwtcrs which can be handled more casily as obscrvables 

by thc estimator portion of the spstcm. Fol example, in OASYS/GCONES and 

OASYS/GRECRS the observablcs are Sun angles, nadir angles, and dihcdral 

angles. (The obscrvables used by OABLAS will be discussed in d: tail in Sec- 

tion 3. GI ) One of the drawbacks of transiorming measurements m 
obscrvables is that it tends to increase the statistical correlation between the 

observables. This difficulty occurs in OASYS and GRECRS which process the 

observations one at  a time. 

,' and (via preliminary s ' tHI 0 

into new 
01 

The equations af the basic recursive processing algorithm used by OABIAS 

follow. (A dcrivatior! of these equations is given in Appendix B.) 

(3-3a) 

Y 

(3-3bj 

(3-3c) 

(3-34 
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P ; [ I  - K  - j  G T ] P  -jR j-1 

8x6 
j sxs 

n x = x  + k  -j -j-1 -j 

where 

(3-32) 

ex1 

. .  

The above equations a re  applicable only to estimators, such as OABIAS, which 

(1) assume that X is constant in time and (2) process the scalar observations 

y one at a time. Equatfcns (3-30 and (3-3g) a r e  not identical to the equations 
J 

actually implemented in 0,4BIAS; the modified equations used In OABIAS ore 

discusscd in  Section 3.4.4. The Equations (3-31) and (3-39 a l e  used in this 

introductory discussion because they a re  more basic and easier to comprehend 

than the corrcsponding OABIAS equations. 

Thc computa lions dcnotcd by Equation (3-3) are performed sequentially on cach 

obscrvation y . In otlicr i\'~rds, y is run through llic cquations, tlicn y and 

80 on until thc coniplcte observation vector 

valucs of S 

is uscd as llic i n i t i d  rcfcrcncc vcclor S 
-1 R 

w must bc providcsd or  computcd for c;icli y . Tlic computationz must be 

pcrl'ormcd in thc order sho\\n in Equ:itioii (3-3) csccpl y 

i 1 2 
has bcen proccsscd. Initial 

mid P 
h h 

-0  0 
must be providcd for proccssing observation y1 . go 

.) In addition, a tvcigli:ing factor 

f f .  
and i c  in~iovalivc 

. C j R .  



rcsidunl z can I x  computcd at any point prior to the AS. comput:ition. 

Also, thc covnri;incc matrix P. can be computcd n: : . point after calculation 
j It -1 

I 
of thc gain vcctor K. . P. is not used in calculi8 

in proccssing the ncst j + 1 obscrvation. 
-J I 

, but is uscd illstcad 

The inclividud cquritioiis of Equation (8-3) now will be discusscd. In Equa- 

tion (3-3;-' is thc aforcmcntioncd niodcl obscrvation. The subscript R 

in Equation 4s-3) indicates t h t  thc psramctcr is computed using a refcrence 

value gjn of the state vector. In most estimation systems, X 
vious estimate X . OABTiS, however, has the capability of updating the 

re€erencc vector less often than this; this capability will be discussed in See- 

tion 3.4. 

- cjll 

is the pre- -jR 
h 

- j-1 

In Equation (3-3b), GjR is an s X 1 partial derivative vector where s is the 

dimension of the state vector 4 . Its value is computed by inserting X into -jR 
the algebraic exprcssion G. (XJ which is fornled by differentiating the y (XJ -1 C 

expression with respect to X a s  indicated in Equation (3-4). Essentially, y 

and sjR are  the first two coefficients of the Taylor series expansion of the 

observation Equation (3-1) ; i. e. , 

c jR 

T + G {g - X. ] + v. + higher order terms.in ZX ) (3-5) 
'j='cjR -jR -1R I - j 3  

In Equation (3-3c), z 

vation j . z 

tor .5' from tlic reference vector S 'jR 
combining Equations (3-3c) and (3-5) to yield 

is called tlic residual, or innovntive residual, of obser- in 
provides an indication of the deviation of !.he true state vec- 

. This can be seen more clearly by 
jR 

T 
2 = G. [X - X ] + v. + highcr ordcr tcrins in  ( E  - X ) (3-6) 
jn i R  -jR J 'jR 
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In !<qu:ition (2-20, 

rcfcrcncc prior to 

h 
it is sccn that, to first orderI z is convcrtcd to :in S 

j 11 -j-1 
its usc in upkiting tlic st:itc vcctor. In othcr WOIYIS, thc 

terms within thc octcr braces f 1 on the right siclc of Equation (3-30 wcrc ob- 

tniiicd by triuncatiirg thc series 

z (? ) = z. g. ) - {gj-l - sjR) + higher oidcr terms (3-?a) j -j-1 J JR 

where 

Equations (3-30 and (3-3g) show that the updated sute vector estimate 2. . is 
obtained by adding a correction icctor AX. to the previous estimatc X 
h -1 -j-1 

AX. is the product of the modiiicd residual vector 2. $ 
K K is romputcd using Equation (3-34; the computation also requires a 

matrix P 

previous observation j - 1 . Except for degradation due to observation ge- 

ometry nonliiicarity, establishing the gain vector through Equations (3-33 

and (3-3e) is 3n optimal tcchniqiic because the resulting estimate X is opti- 
-j 

mal according to the several satist ical  and nonstatistical criteTia. With the 

nonstatistic:il :ippro:ich taken in Appendix I3, this mcthod is optimal bccmsc 

thc rcsulling S. minimizes a gcncrdizcd Icast-squares loss function. 
-1 

Thc tcrni IV of Equation (3-3d) tclls the processor how heavily to wight  

obscrv:ilion j in  gcncratiii;: tlic iicw cstimntc X . The matrix P , which 
'I I-1 

was connl)ultrl vi:i J 3 p : i t  ion (:bk! wlicn pi.ocwsiiig obscrvntion j - 1 * tclls 

thc processor ho\v iiitich wiglit to :ittwh to tlic prcccding cstimatc X 

A h -1 . 
) and a gain vector 

-1 I I-1 

-j -i 
which 1573s computed, via Equation (3-3e), when processing the j-1 

h 

h 

I A 

A . - j-1 
8 
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is - solT of tlie uncertainty in s 

QOOR Q u W  
Stntistic:il cotisitlcrnt ions indicatc tlxit optininlly (1) the initial input matrix P 

sliould bc tlic cooarimce ECS - and 

(2) each w. should bc the invcrse of the vnrinnce OY- in y. due to random 

er rors  in the basic measurements m If thesc conditims are satisficd for or' 
each obscrvation yj , the resulting niatriccs Pj will be thc covariance 

EE,V - &I Ll - $P' of the unccrtnintjp in tlic cstiniate zj . Analyses wvhicli 

lead to these ccnclusions usually assume t int  (1) the observation geometry is 

linear, (2) the y er rors  are uncorrelated, and (3) the input measurements 

F, enter directly into the y. 

3.3.3 Discussion of WeiKhting Factors 

0 
A h A 

-0 
2 

J J J :  

h 

i 
01 1 '  

not the ycj , computations. 

The question of observation errors ,  optimal weighting factors w. , and the 

conditions under which processing the observations one a t  a time is an optimal 

technique will be considered at  this point. The results of this development will 

be used in the discussion of the OABIAS observables and weighting factors (see 

Section 3.6)' Let be the composite n X 1 measurement vector of a block 

. of data and let mar , where a! = 1 . . . n , be the individual scalar measurements; 

I 

Lo., m is an element of @ . Let dm and d u  be the scalar and vector 

measurement errors. Let be the p X 1 observation vector. Neglect the 

degenerate case in which each element y. of '15 is identical to a corresponding 

scalar measurement m . It is assumed that each observation y is computcd 

using oac or  inorc m Is  ; Le., 

01 cy 

J 

CY 1 
ff 

Lct cly :rnd ClX bc thc s c d w  mid vector observation vcctors. Assunw that 

they result cntircly from thc mc:isurc*nient crrors dlI - . i 

3-23 
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Then, to first ortlcr 

where 

(3-9a) 

(3--9b) 

Let RhI and R 
tion (3-93). to first order 

be the covariance matrices of d z  and dy . From Equa- Y 

PXP nxn 

Statistical approaches to the estimation problem indicate that processing the 

observations y. one at a time, as has been assumed in the current section, 
J 

can be optimal only if the dy Is a r e  statistically uncorrelated; Le., if Ry 
j 

is diagonal. In this casc, the inverses of the diagonal elements of Ry are 
the optimum wcighting values wf . 

1 

Using Equation (3-lo), tlic necessary condit;ons for a diagonal R 

showm to bc thi t  (1) each scalar observation y. i s  computed from its onn set 
1 

of rneas~r~~:i i~: i ts  31. whose elemcnts m. , whcrc a= 1, 2, ... , n , a r c  

not uscd in tlic com~nikitions of nny otlicr observation y whcrc I; i /  j mid 

(2) thc measiircnicnt subscDts lJ g,, . . . , 3J 
men, ~ l c  vnrinacc 4 atid optimuni weig~itiiig factor w* of obscrvatiou j arc 

can be Y 

-1 Jo! f 
k '  

arc shtisticnlly uncorrclatcd. 
1' " P 

YI j 
1' 

(3-lla) 
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J h. = - 
jol 

p am @.I J (3-llb) 

In the special case whcre the elemcnts of M. arc uncorrclatcd with variances 
-1 

, Equation (3-lln) reduces to 2 
Urn& 

. 
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This scctioii disctisscs the gcncrel fcaturcs of tlic iinplcmcntntiou of thc re- 

cursirc cstinxitor :ilgorithrn in OtWIAS, incliicliiig thc innin options which a rc  

available to iilflucncc its pcrformnnzc a s  an estimator. 

3.4.1 Principnl Inputs 

Prcprocesscd tclcnietry information is the principal input rcquired by OASYS/ 

OABIAS. Each framc in this data set must contain the following information 

from a single spin period of the satcllitc: 

e The measured angle fl  between the Sun vector and the satellite's 

spin axis 

0 The time t a t  which the Sun tms sighted 

o The central body-in crossing time t 

the line of sight of the horizon detector crossed the sky-to-central- 

body horizon 

6 

Le., the time at  which HI ' 

k0 e The central body-out crossing time 

< e The satellite spin rate o 

, and t constitute the elements m of the measurement vcc- , * tIIr 110 a 
tor noted in Scction 3.3.2. Thus, i f  thcre arc n useful framcs in the 

tclcnictry data set and iionc of the mcasurcniciits in any of the frames is dis- 

carded, in the climension of is 4n . In this contest, the  spin rates u 

in tlic data sct n c  not considcrcd nicnsurcnicnts bccnusc they normally arc 

cornpit cd alg:c.br:~ icilly iisi 11:: thc t 

bccnusc they arc uscd only in prcliminnry processing in 9.4SSS, not in OADJAS. 

In addition to thc tclcnictry inputs , tlic OXI3IAS rcciirsive cstimntion sub- 
4 1  

systcm rcciuircs tlic unit Siin vcctors in  gcoccntric incrtinl (GI) coordinntes U 

mc:i surcnicnls nnd, mcrc sign i fic:intly, 
S 

t 

. ..- 
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at c;rch Sun sighting and thc cciitrnl-bod~.-to-~ntcllitc vectors in GI coordiixitcs 
-GI It  a t  cach horizon crossing. Thcsc arc obt2incd from cphcmcris data o r  an 

orbit gcncrator. Tlic OABIAS recursive estimation subsystcm, also requires 

tlic aiigukir radius p of thc ccntral body on tlic unit celcstinl sphcrc at thc 

horizon crossings. p is computcd by the prognni  from thc orbit data. In 

addition, the nominnl value of the horizon detector mounting angle y 

initial estimates 2 
P = E (?< - X ) 

m 
are also. needed. 

C 

C 

and the 
S 

of the state vector 3 and of the covariance matrix 
A -'A T 
-0 -0 

- S ) are  required. Pro,aam operating instructions and - 0 

a! error pmamctcrs which a re  supplied by the user through the NAMELIST 

3.4.2 Observation 3Iodels 

OABIAS uses ciglit different observablcs, commonly referred to a s  "models. f f  

(See Section 3.6 for a detailed discussion of thr mathematics of the eight 

models.) When running OABIAS, the user has the option of selecting which 

modcls are io 5c used. These models a re  amlogous to and replace the Sun 

angle, nadir anglc, and dihedral angle models r.rnr13yed in GCONES (Refer- 

ence 8) and OASYS/GRECRS (Rcference 10). 

OABIAS posscsscs models with error-free real observations-a feature which 

is not commonly found in recursive estimation systems. IXI the usual estimation 

system, the mcasurements R,I and their e r ro r s  enter into the compuhtions 

through the rcnl observations 1'; Le., 

OABLIS bIoclcls 2, 3, and 4, however, thc rcnl obscrvntions arc crror-free 

and entcrs solcly through Y ; i.e., Y = x' &I , 5) . The Appendix B 
-C -C 

least-squnrcs dcrivntion of tlic OABIAS recursive estinintor algorithm shows 

that this tinoi~hoclosy docs not altcr thc wlidity 01' optimnlity of thc algorithm 

= 1 &I) mid Y = xc (XJ .l In 
-C 

1 Rcfcr to Scction 3 .3 .3  for tlic distinction 
wt ions, and iiiotlcl obso.v:itions. 

bcttvccn mcasurcmnnts, rcnl obscr- 
- . .- 
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bccausc thc csscntitil propcrtics of thc computccl rcsidu:il vcctor arc  rc- 
Lq i r i d .  

3.4.3 st:itc Ycctol. Elclnclits * 

Thc st:rtc' ~ ~ c t o r  S :isc!d by OAI3Ll.5 contains 12 clcnicnts x 

ments with thcir nllcrnntive symbols s r c  dcfiiicd as follows: 

Thcsc elc- 
rl 

x (s ) ,tnd s (s ) which define the attitude of the sntellite; i. e., 
the orientation of its angular momentum vector 

1 1  2 2  

x (0 ) which defines the phase of the satellite in its spin cycle at  3 0  
the start of the run 

x (u) which is the satellite's spin rate  

x4 (AT) , x5 (I&), xG (@:), xll (CH) which define the effcG;ave 

mounting alignment of the horizon scanner 

9 

x8 (m and xl0 (c) which define t:le effective mounting alignment 

of the Sun sensor 

x (Ap) which is the effective e r ro r  in the central body angular 

radius p 
7 

computed in  OABIAS using orbit information 
C 

x (At) which is a timing-bias due to an effective e r ror  in the 12 
computcd 1oc:ition of the satcllite in its orbit 

Thc prccisc mnthcnintical dcfinitions of the 12 stntc vector clements arc givcn 
0 

. II I1 in Scclion 3.5. Notc that @I and QI a rc  the cffcctivc azimuth nnglcs of thc 

horizon S C ~ I I I I C ~ ,  rclntivc to a body-fixcd refcrciicc framc, a t  thc Earth-in and 

Earth-out horizon crossings, rcspcctively. OABIAS considers thcse as distinct 

par:inietcrs. Also, C 

canvcntion:ll hoi.izon tlclwtors. 

is nil aligiiniciit er ror  of PAS and is no1 rcquircd with 11 

Tlie inili:il cov. -*i;inc . n..itris P 

onnl. ,\YIwii sclcctcd di;ignnal clciiiciits of this iiialrix arc  sct to ZC'FU, tiic 

which the uscr supplics to OtZT3L4S fs ding- 
0 
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corrcspoiiclin,rr clcmcnts of 

throughout tlic run. Tiius, the user can sclcct the conipoiicnts of 5 to be 

updatccl. This is r7 powrcrful and mccssnry tool for thc propcr. use of OAIIIAS. 

rcm:iin coiistnnl, a t  their r7 priori v:iIucs, 
A 

OADIAS also provides thc uscr with thc option of not upd:iting the state rcctor 
A - cstiniatc S after cach obscrvntion. Equ:ition (3-3) shows that a rcfcrcnce 

is uscd iu thc proccssing operations pcrformcd on each obscrva- 
vector 'jix 
tion j . ?Cjn enters into thc mnthcmatics primarily through the partial de- 

rivntivc vcctor C 

geometry nonlincnrity (i.c., which make each G. a function of I-C) update X 
at each observation using X = X . In OABIAS, however, X may be 

updatcd after eacn observation, after each telemetry frame, o r  after every 

N telemetry frames, \ h e r s  N is a user-selected integer., These options 

have been includcd in OABIAS to provide additional flexibility of opcrnffon, 

particularly when observation geometry nonlinearity is significant. OABIAS 

computes an updatcd state vector estimate 3 only at those points where the 

' reference vector (now to be denoted as X ) is upd3ted. . For this reason, pre- 

vious CSC reports have called the operation state vector updating rather than 

reference vector updating. The reference vector is updated by setting it equal 

to the updated sfate vector. 

. Most recursive processors which model the observation 
h 

-jR 

h -1 -jR 
-jR -j-1 - jR 

A 

-R 

.D 

To d~ri; .e  t3e state rector updating equations implemented in OABIAS, coinbinc 

E!y;n:i.),r:s 1'3. 30 and (3-3g) into a sin@ cciuation. Replace ICjR by lCR and 

rcp1.n i h c  j subscripts by k's . Thc first obscrvation after the most rcccnt 

uplntili;: :F; aignificd by k = 1 . Subtracting ?Cn from both sides of the equation 

yields 

(3-12tl) 

I' 
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and 

h 'Ax = o  
-0 - 

(3-12b) 

(2-12c) 

It should be iiotcd that the of Equation (3-12) is not the same variable 

as the AX of Equations (3-30 and (3-3g) because it is dcfined relative to a 

different reference. OARUS sets 

dated and then processes the observations sequentially using Equations (3-3a) 

through (3-3e) and (3-123). Let the number of rJbscr ,rations between updates 

-I 
equal to 0 when the state vector is up- 

A 
.be n . When k = n , OABIAS updates 5 and 'yR using 

(3-13a) 

A z* = &* (3-13b) 

whcrc j;^ 

3.4.4 Itcrativc Opcrntion 

is now the prcvious statc vcctor estimntc. 
-0 

\\'lien the cffcct of obscrwtion geometry nodiiicnrity is significmt, the pcr- 

formancc of n rccursiw filter can often bc itnprovccl by iterative operation. 

\\'it11 this tccliiiiquc, tlic compositc block 1 of obscrvalions, or subscts of 

I 
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this block, :ITC run througli thc filtcr scvcnl times. I'hc siatc vector csti- 

mntc S 
x 

Xx+' for thc ucrt ptiss. I i  thc proccclurc is successful, thc cstirnatcs x 
-0 -f 
will coiivcrge torvtird :I constant wluc 3s X increases. 

A X  
-f olitaincci at thc cnd of any onc p:iss X is used :IS thc a priori input 

Rccursivc filtcrs r'cqiurc, as inputs, not oilly :\ priori state vcctor cstimatcs 

X 
technicluc for cstd~lishing thc matrix iiiput PA to be used at the start  of each 

pass X must be decidcd upon. Thc two simplest approaches are: (1) to rcsct 

P to its original 3 priori value (i.e., P = P , where X = 1, 2, . . .) or (2) to 

use the value obtnincd at  the end of the previous pass (i. e., P , where 

A 
but also ,711 n priori cowri:incc matrix Po . For itcrJtive opcration, a 

-0 

0 

x 
x 1-1 

= Pf 

0 0  

0 

A =  1, 2, ...). 

Three types of itcratioii capability are provided in OABIAS. In the first, the 

complete block 
x of iteration, the user has the option of employing either of the two P 

schemes noted in the above paragraph. The number of iterations are  sclccted 

is run through the processor in each pass. For this method 

updating 
0 

a priori by the user; the program has not beeq given thc capability of using the 
A X  X -f convcrgcnce as a criteria for automatically ending thc operation. 

In the second type of iteration, the iterations are  performed on subsets Y 
of p . Thc xafs are composed of the obscrvations between st&e vector up- 

dates. Thus, if 5 is bcing updated evcry seven frames, Y will coEtain the -1 
oh .~rvations obtaincd from framzs 1 to 7. Thc program will continuc to re- 
proccss I' , until tlic cstimalc atf coiivcrgcs o r  until the specificd limit 

on thc numbcr of pnsscs is rcnchcd. It then will movc on to set Y 
-2 

composctl of the obscrvntions obhiiicd fro& franics 8 to 14. For this inodc of 

itcration, O..\I1IA\S 113s not bccii givcn tlic Po = Po covariance matrix rcsctting 

cap:ibilify; i t  cniploys only tlic P 

-01 

A 

-1 
which is 

A 1  

-: ~ ' - 1  inci~iot~. 
- .. 

0 0  
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3.4.5 Siiqllc Ol)sci.v;ilioi~ Itcr:li!cti 

In addition to thc two itcmtioii tcchniqucs discusscrl Dbovc, OABUS 113s a third 

itcrntivc mctliod cnllcd tlic lincnuily fix (I~cfcrcnce 11). Although conccptuallg 

and mntlicm;itic;illy simi1:ir to thc othcr two itcratioii methods, the 1iw;irity 

fix should bc dist ingriisliccl from thcm. With this third tcchniquc, the program 

iteratcs the sca1:ir obscrvatioiis oiic at n time. That is, my siiiglc obscrvation, 

e.g. obscrvntioii j , is re-run through thc filtcr (A = 1, 2, . . .) until the 

state vector estimate X 

specified lim., on the number of passes is reached. The program then moves 

to obser.vntion j + 1 etc. Aftcr these operations on observation j have been 

completcd, it is ncvcr necessary to recall observation j for further proc- 

essing. As a result, the method provides the advantages of block iteration 

with less degradation to the capability for real-time operation. The algorithm 

employed in OABIAS for single observation iteration was obtained directly from 

Reference 1. 

4 
-j 

converges to a constant value o r  until the c3er- 

* The mathcmatics of thc single observation iteration method can be delineated 

using the basic recursive estimator equations (Equation 3-3) a s  a starting point. 

Assume that thc processing of observation j - 1 has been compIeted to yield 

and P Obscrvation j is to be processed next. Let superscript X 
h 

$1 I-1 
signify the Xth pass (of observation j) through the filter. In pass X , the single 

obscrvalion itcration nlgoritmi uses thc state vector estimate X. from 

pass X - 1 as t?ic rcfcrcncc vcctor. (In other words, the X of Eqw- 

tion (3-3) is now A. 
-1 

thc singlc obscrwtioii itcr:ition option. 

AX-1 
'I 

.?A-1 -In 
.) Equation (3-3) now can be rcwit tcn to cncompnss 

(3-14:i) 
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where 

.. 
x x 
I = Y j  - Ycj 

A0 A x = x  ‘j -j-1 

(3- 1 1 b) 

(3-14~) 

(3-14d) 

(3-14e) 

(3-140 

While thc filter is operating on obscrvation j , thc subscript J in the above 

equations is constant; X takes on values 1, 2, 3, etc. The covariance matrix 
A X  B is not updated during the X passes. Instead, it is updated only after X. 
’I 

has convergcd or the limit on the number of passes has been reached. Letting 

n be thc total number of passes of observation j through the filter, the P 

updating cquntion is 

I-1 
P = [I - 4 1’ I 
sx s 
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This scction tlc1inc~;ttcs the coordinate Cimncs, direction cosine matrices, and 

n - d n  gcomctric vnrinblcs uscd in thc 0.4IZI3IXS subsystem and/or employed in 

the discussiotis iu Scction 3. G of thc eight OLU~ILIS observation mcdcls, Exact 

definition, of tlic 13 clcmcnta of the 0Al)IAS state vcctor 5 %is0 are includcd. 

3.5.1 Coordin:~lc l k ~ n i e  Flow JXngrmi 

The Cartesian coordinate frmics and thc main geometric variables to be used 

in the remainder of this section are shown in Figure 3-1. This figure uses a 

standard technique for displaying the relationships between coordinate frames. 

The circles in the figure A I  pesen t  the coordinate frames. A straight line 

between any two circles defines the rotation by which the coordinate frame on 

the left is transforxiled ,to the frame '1 the right. For examp'.e, rotating 

frame spacecraft inertial (SI) about its z-axis through the angle 9 yields 

frame spacecraft reference (SC). In the interest of simplicity, only the coor- 

dinate frames which are fundamentally significant have been given names and 

symbols; the remaining frames are intermediate ones of lesser importance. 

The rotation nrigles shown in Figure 3-1 are to be regarded as the true angles 

of the satellite being studied rather than as OABIAS time-varying estimates of 

these angles. Thus, the angles a re  time-invariant except for the rotation 

auglc 8 and (in RAE-B problems) the detector mounting .%@le 

The squarcs in Figure 3-1 indicate u ircclion cosinc matrices. For csxnple, 

A is thc dircction cosine matrix which transforins vector components from 

GI rcsolu Lion to SC resolution. 

. 
S 

I' 

. 
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Similarly, I3 (13 ) tr:~nsforms vcctor componcntr: from horizon-in crossing 

prime ( 1 1 1 1 )  horizon-out crossing priinc (IICY)] resolution to YC resolutionl 
1 0  

.. 

Table 3-1, which supplcnierits l?igurc 3-1, defines the directions of the most 

significant &xes of the main coordinate frames. In this section, coordiniite 

frame axes will normnlly be indicated by x , y , and z with appropriate sub- 

scripts. When it is nccessary to specify unit vectors along coordinate frame 

axes, those shown in Table 3-1 will be used. Unit vectors along axes of par- 

ticular significance, such as the one along the satellite's spin axis, have been 

given special symbols as shown in the table. 

3.5.2 Coordinate Frames GI' and GI 

F'rame GI' is the conventional gewentric inerthl frame defined with respect 

. to the celestial equator and poles. Let aP and 6' (not shown in Figure 3-1) 

be the con\*entional right ascension and declination of the satellite's spin axis 

relative to frame GI1. When 61 is close to 0 degree o r  S O  degrees, the co- 

ordinates which OABIAS uses to specify satellite attitude encounter disconti- 

mities (see Section 3.5.8). OABIAS avoids these difficulties by automatically 

performing n 45-degree rotation of fm;.~e GI' ic frame GI in runs where 6' is 
close to (i. c. , within a user-spccificd tolerance of) 0 degree or  B O  degrees. 

F r m e  GI in Figurc 3-1 is thc gcoccntric inertial frame, rotated or  not, which 

is used in tlic O..\BIAS calculations. Thc 45-degree rotation enLiils the trans- 

formation of the unit Sun vector 0 and the orbit radius vector i? from frame 

The 45-clcyrcc rot:ition of fmmc GI' normally is takca about the s 

Ilowcvcr, rotntion nbout tliis mis produccs nn insufficient ch.ii~gc in dccliintion 

wlicii 61 is CIOSC LO o dcgrce iind a' is closc to O dcgrce or  ISO degrecs. 

-axis. GI 
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DESIGNATION 

VECTORS ALONG 
AXES 

NAME OF DIRECTION OF OF UNIT 
COORDiNATE SYMBOL AXES SlGNlF :CANT 

FRAME AXES 

TOWARD VERNAL EQUINOX - STANDdRD 

INERTIAL~ zGl* TOWARD NORTH CELESTIAL 

(SEE NOTE 1 

ROTATED 

GI 'GI GEOCENTRIC 

INERTIAL~ 'GI 
(SEE NOTE 1) 

SPACEiRAFT SEENOTE2 
INERTIAL' SI vsl SEENOTE2 

SPACECnAFT xsc SEENOTE? 
 REFERENCE^ SC ysc SEENOTE2 

- GEOCENTRIC GI' VGI' - 
POLE 

$1 

;4 
3 

t 

- - %I 

- 
I 

tl ALONG SATELLITE SPIN AXIS k -. 
h 

1. 

et 
e2 

ALONG SATELLITE SPIN AXIS k c  - . PERPENOICULAR TO SUN SENSOR 
FACE 

SUN SENSO+ SS vss SEENOTE2 - 
zss SEENOTE2 - 

HORIZON-IN xHI SEENOTE2 - 
ZHl ALONG HORIZON IN-CROSSING LOS - .  

- CROSSING' HI vHI SEENOTE2 

SEE N3TE 2 - 
SEE NOTE 2 

LQS 

'HO HORIZON-OUT 

CROSSING3 'HO - ZMo ALONG HORIZON-OUT CROSSING 

Tablc 3-1. Coordinnttc Frnrncs, ASCS, and Unit Vectors. 

ALTERNATE 
DESIGfdATION 

OF SICNIFICAN' 
UNIT VECTORS 

- - - 
- - - 
- - 

8 

- 
t - 
* 
Ns - 
- 

,#HI 
Lc - 
;no 

'FIXED IN INERTIAL SPACE 

 FIXED IN THE BODY OF THE SPACECRAFT 

'FIXED IN  THE BODY OF THE SPACECRAFT FGA NORMAL HORIZON DETECTORS; ROTATES RELATIVE TO THE 
SPACECRAFT BOOY ON AAE.8 

NOTE 1: THE DIWINCTION BETWEEN FRAMES GI' AND GI IS OISCUSSED IN SECTION 3 5.2.- 
NOTE 2. THE DIIKCT~ONS OF THESE AXES FOLLOW FHOM THC BASIC EOdRDINATE FRAME GEObETRY 

SUMMARIZE0 IN FIGURE 4 I AND DISCUSSED IN TEXT. 
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. 
Thus, whcncvcr n rotntion is-iicccsswy and Cy' i s  within i15 dtgrecs of 

0 dcgrcc or 1SO dcgrccs, the 45-dcgrcc rotntion is taken about y 

hm x 

be notcd that the transformation from GI' to G1 coordinntcs sffects only thc 

intcrnnl workiiigs of OXElRS; it docs not affect the inputs providcd by the user 

ratlicr 

Figure 3-2 suinmaqizes the GI' to GI rotntion crilcria. It should 
GI ' 

GI 

or the 

3.5.3 

outputs generated by the prcgrnin. 

Coordinate Frnnics SI and SC and SLqte Vector Elcmciits x 9) and 
3 

Frame SI is fi..cd in inertial space in any single OABIAS run. Frame SC is 

the basic body-fLsed rcference frame of the spacecraft. Figure 3-3 shows the 

relation among frames GI, SI, and SC. The z - and z -axes both lie along 

the unit spin vector 9 of the spacecraft. Since OABIAS does not include nu- 

tation effects, frame SC IS obLi. . *3m frame SI by a single rotation angle 

d which defines the instmtaneous p,A.ise of the spacecraft in its spin cycle. 

SI SC 

The xsc- and ySC-mes are  oriented such that (he aximuth (measured in the 

plane from the sx -axis) of the center of the spacecraft's Sun - xsc-ysc sc 
sensor is zero. 

OABIAS assumes that @ is a linear function of time 

O = @ o + W f t - t  0 1 (3-16) 

where J, and u are  constant, and t 

The vatuc of q 

in s ,  howewr, bccmse it is an essential componcnt in three of the eight 

OAMXS obscrvntion motlcls. Similarly, W is nn csscntial componcnt of six 

of Uic eight niotlck 

is thc time at the start of the run. 
Q 0 

is normally of little or no direct interest. It must be included 
0 

3-10 
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Figure 3 4  shows the Sun sensor gcometry at  a Sun sighting t h e .  

figure is the mglc mcnsurccl by .the Sun sensor, and 6 i s  the- true Sun angle; 

Le., the. anglc bciwccn U and S . C and AB a r c  bias errors  which cause 

the variation belwccu B and f l  

on this 

h h 

hI 

This documcnt ciiiploys a coordinate frame Sun sensor (SS) whose axes are 

attached to thc Sun sensor. The x - and z -axes form the sensor's reference ss ss 
slit plane. Idcally, the Sun sensor is mounted such that the spacecr'afVs spin 

vector 8 lies in this refercnce slit plane. The sensor sights the Sun and 

measures the angle bb1 at those instants when (1) the spinning x ss-zss plane 

crosses the unit Sun vector 8 and (2) the angle between U and x is within 

the range limits of the sensor. I f  the Sun does lie within the sensorts FOY, i t  

is sighted once per spin cycle. 

A 

ss 

OABIAS models the Sun sensor biases as actual o r  effective alignment e r rors  

€ and AS. C and AB a re  included in the state vector 3 as elements 

x and x respcctively. c is an ali,*;nment tilt of the reference slit ptanc, 

and AB is a rotation of the instrument in this plane. AB is, in effect, an 

alignment error of the main slit plane of the a s o r .  

10 8 '  

L 

3.5.5 Horizon Dctcctor Geomctm and State Vector Eleriients x (Ay) , 4 
x5 , XB (q 9 and 24 11 (c 11 

Parameters wliich arc relntcd to hoi.izcn crossings-either central-bcdy in o r  

central-body out--are signified by thc subscript I1 . Indices I and 0 are  

uscd, as ncccssary, to inclicatc iu-crossings and out-crossings, rcspcctivcly. 

Thc 1iorix0~1 scmiiicr rcprcscnt:ition usctl in  O;\UIAS cmploys separate coordi- 

natc frniiics for in-crossiiig :md 011 t-crassiiig coiitlilioiis. I n  Figire 3-1, 

1101 izon-in ciwssiiig (111) :ind horizon-ou t crossing (110) are the main coordiiintc 

fr.mws of thc horizon scmicr .  111' and ]IOt are tlic intcrmcdintc frnnics and 

3-43 
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0 
are dcsignnlctl only bccnirsc liter scctioils utilize thc matrices l3 and B 
which tmnslbrni vector resolution from 111' and 110' back to SC coordinates. 

1 

A A 
The gcoinctry of 3 horizon-in c r o s s i q  is shown in Figure 3-5. L I 
dcsigiate unit vectors along tlie z - nnd z -axes, respcclively, A horizon- 

I I1 I10 
in crossing occurs whcn L crosscs llic s'J-Lo-ccntral-body boundary. A 

horizon-ou t crossing occurs when L crosses the central-body-to-sly bound- 
0 

ary. 

and Lo 

A 

A 
I 

The orientation of frame I11 relative to the satellite body-fixed reference 
I frame SC is specified by angles 8 

€10 relative to SC is specified by 0; , € is the nominal 

mounting angle of thc horizon detector's 'line of sight relative to the satellite's 

spin zxis. For normal horizon detectors y is constant. Thus, framss HI 
and HO and the intermediate frames HI' and IiO' are invariant relative to 

frame SC. For the F.;E-B PAS, however, y is stepped in 0.7-degree in- 
crcments. hence, in PAS problems, frames 111' and HO! are fixed relative 

to frame SC, but €11 and HO are time-varying relative to SC. 

, CH , Ay , and Ys . The orientation of 

A 7  , and Ys . Y H' S 

S 

S 

OABIAS models the horizon scanner bias e r rors  through the rotation angles 

c 

x and x respectively. € and AT are regarded as alijgment e r rors  

of the unit and are considered to be identical for both in-crossings and out- 

crossings. € however, is used only with PAS. As can be seen in Figure 3-5, 

when A y  , y mid y are  constmt ;as they are with normal horizon detec- 

tors), a non-zcro c affects the horizon triggcring times in ihc same way as 

a bias is0 on Lhc azimith nnglc 9 , Hence, it is not possible for OABIAS 

to d i s ~ i ~ i ~ u i s l i  I)(-twccn € 

froiii tlic :ivail:ildib lmrizon crossing tinie dah.  \\71cn iunning 0AnI:\S, tIie 

usual tcclniquc for circumwnling this difficulty is to constrain 6 to zero. 
I n  1 J . U  L'UIIS, I i o w e ~ ~ r ,  c in principlc, is c1istiiigiiish:iblc from AS and 

I 0 
11' x4 

A y  , e,, , and O I I .  These are included in X as elements x H' 
5 '  6 '  H 

I1 ' 

S' 

11 

1I H 
mid AQiI , and only o m  of the pair is obscrvablc 

11 

H I  
11 ' H 

3-15 
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NOTE: THE RELATION BETWEEN THE SC AND HI FRAMES CAN BE SEEN MORE CLEARLY IN 
FIGURE 4-1. 

1:ipirc 3-5. Horizoii IktccLor Ckotnctry at 
Cent rnl- 130dj - 111 Crossing 

3-16 
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0 
I 1  S 1I 

A0 t~ .cnusc  of tlrc tiiiic vnri:itioti of y ; hcncc € is not constrained to 

I 0 
11 11 9 an3 (b a rc  nziniuth .angles .of tlic horizon dctector and cqn bc regnrdcd 

as tlic sum of tlie nominal azimulli nnglc 9 
nnglcs A0 and A$ ; i.e., 

and smaller perturbation IIXOAI - 1  0 
€I I1 

I 0 The biases AQH and AGH result not only from physical instrument misalign- 

ment, but also from improperly predicted electronic phenomena associated 

with horizon detector triggering. The latter type of bias i s  not necessarily 

identical for Earth-in and Earth-out crossings, and for this reason OABIAS 

uses distinci azimuth angles and 0 for in-crossings and out-crossings. 0 
H H 

0 
'OR indicated above, horizon detector azimuth bias e r ro r s  A d  and AOH 

are includcd in 5 .  However, an analogous azimuth bins A9 of the Sun 

sensor is not included. Instead, the x 

ner that A9 = 0 . As shown in Figure 3-4, the x 

in OABIAS lies along thc intersection of thc Sun sensor rcfcrence slit (x 

z ) plane with the plane perpendicular to the spin vector S . The OABIAS 

sLTtc vcctor lins bccii sc l  up in this mnnr.:-- because i t  is not possible to dcter- 

mine nbsolu tc nziiiiulh niis:iligiuiictits (rclntivc to an mbi:rary body-fised 

reference frame with nn axis along 

dctcctor from tlic nt.ail:iblc Sun sighting and horixorh crossing tinic dntn. 

rttstcd, only tlic ;ixitiiuiIi ~n is :~I iy~n~ct i t s  ol' one iiis1ruiiictit relative to the oCticr 

c m  be dctcrmincd. The OAUIAS solution lins bccti to constrain the azimuth 

aliglmctit nllglc ol tlic Sun S C I I S O ~  to zcro. 

H 

S 
-axis has been defined in such a man- 

-axis employed internally 
sc 

S SC 

SS- 
A 

ss 

) of both the Stin sensor and the horizon 
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3.5. G State Vector Klcnicnt x (Ap) 
7- 

Using horizon crossing time data in att;'ude determirration computations re- 

quires that tlrc valucs of tlic an&lar radius p of the central body on the unit 

celestial' sphere as  seen from the satellite be known. (The technique used in 

OASYS/OABIAS to compute P is discussed in  Scction 3.7. ) State vector 

element x is a constant angular bias AP on the computed values P of P . 
The assumption that D P might have a constant bias is realistic because a 

constant bias on the triggering thrzshold of the horizon scanner is the main 

e r ror  source which generates a AP . Figure 3-6 demonstrates this phenom- 

ena. The attitude determination algorithnis assume that the sensor triggers 

whenever the center point of its FOV crosses the boundary of the central body 

disk. Figure 3-6 shows the res+dt when the triggering occurs significantly 

early 011 the in-crossing and late on the out-crossing. The figure indicates 

that this triggering time e r ro r  iwreases  the apparent P of the Earth by a 

constant value, i.e., AP , which is independent of the path of the sensor 

across the Earth's disk. This, of course, is a simplified view of the trigger- 

ing phenomen:, and is based 011 a number of assumptions and approximations 

7 C 

C 

which include the following: 

1. The FOV is circular 
d 

2. The oblateness of the central body is negligible 

3. The change in Uie true angular radius p of the central body 

during the rpn is negligible 

The sensor triggers, on the average, when 8 given fraction dA 

of its FOV is illumimtcd 

4. 

1 
5. d.4 is idcntic:il for both in-crossiags and out-crossings 

6. dA does not chniyc significnntly during thc run 
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Frcm tlic nbove p:irngr:iph, i t  should be cvldent that A& is In,~,ely a result of 

sensor bchnvior rntlicr than of an actual uncertainty in the true Earth radius. 

3.5.7 State Vector Element s (At) 12 - 
State vcctor clemcnt s is a time bins At in the location of the satellite in 

its orbit. It represciits either o lag or  o lead of tire true in-track location of 

the salellite in i ts  orbit, relative to either the '!ocation predicted by 'tho OAP'AS 

orbit ge;icr;ztor or Ihe location specified by the orbit data supplied to OABIAS. 
The use of such a bins is convenient f r  Y approximating siniuL*.tcd orbit data 

errors  which result from aerodynamic drag near the perigees of highly ellip- 

tical orbits. At has been included in 25 mainly to hp*--" ? this type of problem. 

It should be emphasized that At is not an e r ror  in the telerl, - .ed sensor 

At enters the OABIAS ntathematics only HO 

12 

-GI 
event times t D t~~ # Or 

through the orbit radius vector R 

3.5.8 Transformation Matrix A and State Vcctor Elements x Ls ) And 1 1 -  

, -_ . - _  

x2 (S2) .. 

The OABUS Agorithms require computation of the transformation matrix A 

shown in Figure 3-1. This section discusses thi : computation and includes the 

parameters s 
of 

and s2 which OABIAS uses as the x1 and x 1 2 coA.;ponenls 

to specify spin vector attitude. 

Using Figure 3-1 and elemcntnry rotation matrix techniques, A may be dcter- 

mined as a function of the angles a ,  6 , atid 0 . The result is 

(3-17) 

wlicrc! s = sine and c = cosinc. 
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A can also bc cxprcsscd in the followiiig form: 

-. 

A =  (3-18) 

where el , 2' 
frame SC, and superscript GI signifies resolution along the axes of frame GI. 

Superscript T signifier that the elements are 1 X 3 row vectors rather than 

3 x 1 column vectc- $1 lies along the spin axis of the satellite. Thus 
G ' = S .  

Let the scalars F~ , s2 , and s 

Equations (3-1V a d  (3-18) S!IGW that 

and 8' are unit vecwrs along the x-, y-, and z-axes of 
2 '  3 

3 
A 

3 
AGI signify the components of S . Then 3 

a =cBcar 1 

8 -cdsar 
2 

s = s 6 = 2 & - . s  2 2  - S  
1 2  3 

(3-1(9*, 

(3-19b) . 
(3-1%) 

The plus si:y is used with the radical sign in Equation (3-19c) when 6 2 0 , 
and the minus sihq is used wlieu 6 5 0 . ~ 

- In pI:icc- of tlic iisud Q! 2nd 6 angles, Oh131.U uscc s and s 
1 2 

as tlic spin 

v c  -tor a:titudc coordi ntcs x and x of X . Therefore it is necessary - 1 2 
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This can bc donc, clcniciit by element, using Equalioiis (3-17) mid (S-19). Thc 

result is 
-. 

a a  11 12 13 

a a a  1 31 32 33 

(3-2Oa) 

s s a8 - s p  s2s3c(b f - s  s9 - s + s  

3 'Ic] + s2 
i Sl s1 + s 

1 3  . 1 

-s s 39 - s 2 08 -s*s3s(b + s 1 c8 p + si] s@ 

Js1+s2 /- s/T s / - T z  
2 s l + s  

1 
='- 1 3  

where 

8 =.,\I1 1-s2_s2 1 2  
3 (3-20b) 

i 

Equations (3-203) and (3-2Ob) are the ones actually used ia OABIAS to conipute 

the elc vn:s a of A . (b i s  computed using Equation (3-16). 

Eqmtions (3-193) and (3-191) show that s 

proachcs S G  dcgrccs, Equations (3-203) and (3-20b) show t h t  the elements 

aZl , n.,,, of A then approach a siqgilnr condition (zcro dividccl a 

- by zcro). Tlic iicl rcsult is tlmt Oic use ol coordiiutcs s and s docs aot 

cliiiiiiinln tlic \ w I l  I;iiowti singularity at 6 = 90 dcgrccs which is cncourilcrcd 

witl: Q and 6 coordimlcs. Thc ; trpose of the 35-r:zgree coordiiute rotation 

whcii 111c uscr-supplied dcciinntion cstini:Itc 6I is close tc dcgrccs is to 

Clu 

and s 1 2 approach zero as 6 np- 

ll ' % ' e- 

1 2 

h 

0 

:i\.oid t l i t s  d ; : ! 3 c ~ l t > * .  
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As noted previously, the correct sign of thc square root term in Equation (3-20b) 

is posit6.c when 6> 0 and negative when 6 

correct sign of s 

the run. Thus, erroneous conipitations woula result if the filter's transient 

responsc wcrc such that the sign for s 

OABIAS preve!its t' is from OccurriLg by performing the aforementioned 

45-dcgree rotation n. cnever the user-supplied declination angle estinate 6' 

is close to zero. The proper sign of s is determined from the sign of the 

initial declination angle 6; of the rotated coordhate franie GI. As a resclt 

of the rotation, s 

the run; hence the potential ch.qme difficulty i s  avoided. 

0 . OABIPS dctermincs the 

at  the start,of each run and maintains this sign throughout 
3 

hsd to changc during the run. 
3 

A 

0 

3 
A 

is sufficiently large that it wY1 not pass through zero during 3 

0 3.5.9 Transformation Matrices B and B I 

The derivation of the equations for the direction cosines matrices B ancl B 
I 0 

of Figure 3-1 reqdires only straightforward rotation matrix techniques. Be- 

cause the form of the equations for B and B I 0 
matrix, to be designated as B is show5. The azimuth angle is s.pified 

by gH . The remlt  is 

is identical, only ti single 

H' 

whcrc T ( ) signilics Ihc tmlris for the rolntion n h u t  tlic axis within thc 

parcl~lhcscs and superscript T sipiirics matrix transpose. - 

3-53 
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Thi ; section discusses each of the eight OABIAS observation models. Also 

included are the tlcrivations of the y and y 

models. Ffrst, liowcver, the pertinent features of th.t general obscrvation 

model equation uscd by OXBIAS wil l  be recapitulated. 

algoritlims for cach of the 
C 

The OABIAS observation model equations are in the form 

where y = the real observation 

= the model observation 
yc 
m = the 4 X 1 vector of the basic measurements for the frame being 

v =.the net e r ror  %e to the er ror  in and to modeling approxima- 

processed 

tions aud inaccuracy 

(3-23) 
. . . .  - 

Y 

OABXAS processes lhe telemetry frames individually. Assuming no Sun angle 

smoothing, no obscrvation model atilizes measurements m L rom mor2 than 

one telemetry trnme in any single processing operation. For this reason, in 

the reniaindcr of this section, Finglc fimie nieasuremcnt vectors E will be 

referred to rather than tlic coiiiposite block ~~ieasucenicnt vector ;I! used 

earlier in this report. Also, the form 0; ilkpation (3-22) will be maintained 

throughout this section with thc ccal obscrvnlion on thc lcft and thc modcl 

obscrvntion 011 11ic right. 

a 

For cnch of llic eight niodcls tlicre is :in olxwrvation cquntion of tF-r +*ncral 

forin shotvn nbovc. In hlodcls 1, 5, 6 ,  and 8, y is calculated using one or  



mom clemeiits of nt . I n  hIocicl 7, y is thc telemetcred horizon dctector 

mglc. I n  hrotlels 3, 3, and 4, y is zero by definition. 

mock! from an algcbrsic expression involving one or more 

and, directly or indirectly, one or more elements of 

and 4, dic dcpcndcncy enters solely through y . 
When running OiIDIiI8, thc uscr sclccts tlic clcmcuts of 

. 
C 

is computcd in each 

elemetits of 5 
In Modcis 2, 3, 

to be used and the 

models to be employed. These must be compatible with each other and with 

the attitude detcrmimtion problem being pursued. Because knowledge of the 

elements of S which appear in each of the models is important, they will be 

noted explicitly in the discussion of each model. (See Table 3-2 for a sum- 
mary of these elements. _-- 

The OABIAS recursive estimation algorithm also requires computatious of 

partial derivatives cr the form 

I ) = l t o 1 2  

The 12 g 's are comprised in the G vector used elsewhere in the report. 

Because there are 8 modcls and 12 state vector elements, there are 96 partial 

derivativcs including some which arc zero. (Becaue of the number and com- 

plcsity of the partial deriv3tive cquations, they are ccntaincd in Appendix A. ) 

3.6.1 RIodcl 1--Stin An& ;\lode1 

r)  

Thc mglc \vhich is. mcnsurcd by lhe Sun sensor @ 

BIodrl 1 m l  is clcnrly tlic most significant clcmcnt of 

hlodcl 1 is similar to the Sun angle modcls used iu OASUS/GCONES and 

OASYS/CiRI~CIIS csccpt Alodcl 1 includcs thc Sun scnsor misalipimcnt angles 

is the observable fur  h1 
used by 3Iodcl 1. 

€ alld 4B . 
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Thc basic gconietry at a Sun sighting is shown in Figure 3-4. The fcatures 

of this figure csscntinl to bIodcl 1 are repented in Figure 3-7. 

The Sun anglc observation equition is obtained by applying thc law of cosiiies 

of sicks to thc spncrical triangle shown in M y r e  3-7. Thus, 

= -48 + arc cos (sec c cos B) (3-24) 
%I 

A suitable equation for cos fl now must be derived. This equation should 

include elements of 5 but not the measured Sun angle f l  
starts by expressing cos B as the dot product of U and 9' 

. The derivation M 
A 

- 

(3-25) 

Let G and bz resolved along the axes of frame GI and let their components 

be dcsigntcd as u1 , u2 , u3 and s1 , s2 , s3 , respectively. In OABIAS, 

an ephemeris file or orbit generator provides the unit Sun vector components 

u; , uH , u' (at Sun sighting time t ) along the axes of frame GIt, These 

in runs in whicb the 45-degree frame GI rotation are identical to u 

is not made. In runs in which this rotation is A.- ,de, the OABIAS transforms ' 

3 S 

1 ' u2 ' u3 

u' into u1 , u2 , u using standard rotation equation methods. 

and u are not functions of E ,  s is computed using 
"; 5 u; 9 3 

V U 2 '  3 3 Iience u 

Equation (3-19c) given previously. 

In suninmi-y, the hlodcl 1 ecpations are 

Y = Bhf 

=-AB+nrccos  [(u s + u  s + u  s ) sec €1 
yc 1 1  2 2  3 3  

(3-263) 

(3-2Gb) 
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Figure 3-7. Geomctry for Modul 1--Sun Angle Model 
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whe rc 

S 3 = =/- (3-26~) 

The corrcct sign in Equation (3-2Gc) is deicrmincd at the sLxt  of each OABIhS 

run. 

Equation (3-26) shows that Model 1 contains the following S elements: 

I -- 
Model 1 is the only model which contains 43 , and it is the onll model that uses 

the Sun angle measurement 8, . Hence, hladcl 1 normally is included in all 

OABIAS runs. 

3.6.2 Model 2--Sun Sighting Time niodel 

Model 2 employs only the Sun time measurement t . "he essential features 

of the geometry are shown in Figure 3-4. In this figure, the Sun sensor refer- 
B 

rotates in inertial space due to the spin of the satellite. ss-"ss ence plane x 

The Sun is sighted when this plane crosses the unit bbn vector, 0 . 
A 
N 
to xss and z 
Therefore, 

is the unit vector dong the Sun sensor axis y which is perpendicular SS 
h A s 
N is pcrpcndicu1:ir to U at  Sun sighting timcs t . SS' s 8 

(3-27) 

A h  
Thc obscrvablc for IIodel 2 is U N = COST , whcre 7 is thc angle between 

8 
A 

as sllowii in k'igyrc 3-4. Thc valuc of COST varies as n function 

.. 3-58 
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of thc angle Q of tkc satcllitc in its spin cycle. Assuming the orientation of 

U and S to be constant, COST is a periodic function of time; its fundamcntal 

period is the satcllitc's spin period 2 n / w .  COST is obse~ved only at those 

timcs t when Ihe Sun is sighted. Iiowevcr, COST is zero at t = t as  was 
S- S 

indicated in Ecp:dion (3-27). Therefore, the real observation y and model 

observation y 

h A 

for Model 2 are 
C 

y = o  (3 -2 82) 

A h  
y c = U *  N S (3-2 8b) 

where y ie evaluated at the measured Sun sighting time t . 
It should be apparent that there is a fundamental difference between Models 1 

and 2. In Model 1, the significant measured parameter b entered into the 

mathematics through the real obs.ervation y . Ths, y was not known per- 

fectly. In Modcl 2, the measured parameter t enters the mathematics 

solely through the model observation y 

Model 2, y is zero by definition. Hence the name "obse- vation" as applied 

to y in Model 2, in a sense, is a misnomer. However, this difference be- 

tween the mothods of Models l and 2 does not affect the perfornknce of the 

system as  a lcast-squares recursive estimator; in both cases the residuals 

y - y 

A suitable equation for y 

dcrivcd. Using frnmc GI resohlion, Equation (3-2%) becomes 

C S 

M 

S 
rather than through 3' . With 

C 

have equivalent properties. 
C 

conlaining t and elements of X - now must be 
C S 

(3-29) 

I' 
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of P1 
1 ' u2 ' u3 As was nottd in tlic hlodel 1 discussion, the components u 

are providcd by cphcmcris data. Ilence, the remaining problem is to dcvelop 

equations for the coniponents n' of sG1. 1 ' n2 ' n3 8 

I3ccausc N lics rrloii~ S yss' 

(3 -3 0) 

equations now can be developed with the aid of Mgure 3-1 2 ' "3 The n l ,  n 

and standard coordinate frame transformation methods. The result is 

AG1= = ATT (x) T T (y)= 1%) 
8 € Ab 

(3-31) 

where superscript T signifies a matrix transpose and 

(3 -33b) 

. .. . .. 

A is thc dircction cosine mntris dcfilicd in Figure 3-1 and discussed in Scc- 

tion 3.5.3.  It is  computed in Oi\UI:lS by Equation (3-20). 
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is obt:riiiccl by substituting Emations (3-32n) 1 ' "2 ' n3 Thc fiwil equ.ltion for n 

and (3-32b) iiltc Equ:ition (3-31) and performing the  niultiplicntions. By indi- 

cating Uic clciiicnts of A by Io&r case Ictiors, as shown in Equation (3-ZO),  

the result is 

(3-33) 

AB d w s  rlot appcar in the result. 

The final equations for Model 2 are Equations (3-28a)' (3-293, and (3-33). 

Equations (3-23) ,and (3-30) show that Model 2 includes the following elements 

of 8 : s1 

Model 2, the measured Sun sighting time t is used. This is the mechanism 
through which 

s2 , t,b0, w , and c . When computing 0 and, hence, A for 

S 
enters the Model 2 mathematics. 

3.6.3 Model 3--Nndir Vector Projection hIodeJ 

The central body horizon-in crossing time t HI 
time tHo are the elements of 

requests Model 3, separate calculations using first t 

perforincd. In the intcrcst of siinplici ty ,  the present discussion and notatioc 

will not distinguish explicitly between the horizon-in c r r , d n g  and horizon-out 

crossing cases. 

or the horizon-out crossing 

which are use6 in Model 3. When the user 

and then t 
HI HO 

are 

Figux  3-8 summnrizcs tlrc cssc..~inl gcomctry fo- RIodcl 3. IA this fig,,re, 

L is thc unit vector nloiig tho line of sight of thc hot imn scniincr and r:)[:!tcs 

in inerlinl spncc due to the satellitc's rotation. Figtire 3-8 shows the locus 

tmccd out on the tinit cclcstinl sphcrc by tlic tip of I , .  -11 is :'le unit nndir 

vector of tho ccntrnl body; it niovcs tclntivcly slowly on the celcslinl splicrc 

h 

' A  h 

3 4  1 
- ' I  



.. 

. .. , 



ORIGINAL PAGE P$ 
OF POOR QUALITt 

due to the in-track motion of thc sntellite a r o i d  its orldl. P is the apparent 

angular radius of the ccnti*al body on the unit celestial sphere :IS seen from the 

satell i tc. .. 
h A  

The obsci.vablc for hlodcl 3 is the parnmetcr cos p + R L , This pnrametcr 

varics cyclically a t  the orbit period 2n/U . There is also a slow variation due 

to the motion of fi on the celestial sphcre and (in elliytic orbits) Uie changing 

magnitude of P . The measurements of this observable are contained in the 

horizon crossing times 1. , A chcclc of the geometry in  Figure 3-8 will show 

that the observable is zero at these timea. In this respect, Model 3 is amlo- 
H 

gous to Model 2. The equations for y and y , therefore, a re  
C 

Y = O  

YC = c o s P + f f .  2 

where y is computed at the horizon crossing times t . 
OABIAS USBS the following equation to obtain cos P for the y 

C E 
computation: 

C 

(3-34a) 

(3-34b) 

where pc is the computcd \due of P obtained wing orbit dnta. (.%e Scc- 

tion 4. G for a discussion of this computation. ) AP , which is elcmcnt x 

5 ,  is a bias on P . 
To derive thc ccpntion for R T, , frame Gi resolution is used. Let % bc 

thc distniicc vcctor from UIC Earth's ccnlcr tc Ihc sntcllile, Then 

of 
7 

C 
A / \  

I '  (3-30) 
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(3-37) 

The R1 , A , R valucs are gencrated for tlie OABLIS recursive estimator 

via an ephcmcris filc 31: orbit generator; these data are transformed as nec- 

essary in those :ipplicatiom where the 45-degree GI' to GI trarisf,,,..ntion -is 

made. 

2 3  

. Use of 1GI ' '2GI ' '3GI Let the components of ZG1 be designated as 1 

Etpatiom (3-b5) and (3-36) now enables the y expression in Equation (3-34b) 
C 

to b? 1 .'tCP. 3s follows: 

= cos P cos AP - sin p sin Ap 
yr: C * c  

(3-38) 
1 

'R 1 + R  1 1 
-k I 1 1GI +R2 '2GI 3 3GIj 

of tG1 w e  derived Suitfible equations for the components 1 

using Figure (3-1) a d  the usual rotation matrix techniques. The intermediGte 

result is  

1GI ' '2GI ' '3GI 

* I  

5-64 
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"ha becond part of Equation (3-39a) follows from the fact that E lies along 

and b of matrices A 5Cc u the z -axis. The equations for tile elements 

and B are Equations (3-20) and (3-21). The final scalar equations for I 

'2GI ' '3GI 
tions (3-38), (3-39), and (3-40). The result is 

H 

1GI * 
are obtained by performing: the matrix multiplications of Equa- 

(3-41b) 

all 'lSC + a21 '2SC '31 '3SC 

'12 llSC ' '22 '2SC + a32 '3SC 

813 *lSC + a23 l2SC i- a33 '3SC 

The firm1 equations for Model 3 are Equations (3-31), (3-37), (3-38)' and 

(341) .  Equations (S-lG), (3-20), and (3-21) also are needed for compuhtion 

. of thc clcments of the X and 13 matrices. 

In using 1:quation (3-1G) 

timc t is the mc:rs!ri*cd horizon crossing t 

conqmtc t h ~  i1IIglC Q which appears in X , thc 

- 4  

(343) 1 I -11 +&! t - t  @n1odrl 3 0 I 11 ol 

3-65 
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-GI 

of S . Thcsc a r e  thc two mechanisms through wkich .- ni enters 

Thc elenleiits of It , howcvcr, arc  evduzted at t + At where At is 

element s 
12 

into BIodcl 3. 

I1 

A chcck o f  the cquations wi l l  show that hlodcl 3 includes the following elements 
I 0 

of x: - s l ' S 2 '  $o , AY , O,, o r  QB , AP W , tH , and A t .  

3.6.4 Model 4-4lorizon Crossing Timc Model 

HI As w i t h  hIociel 3, Model 4 employs the central body horizon crossirg times t 

Or tHO 
with Model 3. Once ngain, the present discussion and nutation will not dis- 

w i s h  explicitly between horizon-in crossings and horizon-out crossings. 

are made HI and tHO . Likewise, separate calculations using t 

Figure 3-9 shows the essential geometry for Model 4. N 
along thc y-asis of frame B and the horizon detector line of sight vector L 

lies along the z-axis of frame H . Hence, N and L are perpendicular to 

one another and N H 
spin of the satellite. 

is a unit vector 
A 

H 

A A 

H 
A h  

L = 0 . Both vectors rotate in inertial space due to the 

Figure 3-9 shows the locus swept out on the unit celestial sphere by the tip of 

2. 8 is a unit vector whose tip is at the intersection of the perimeter of the 

central body disk and the locus of 2 . D moves (relatively slowly) due to the 

motion of thc satellite in its orbit which produces motion of the central body 

disk on tlrc unit  celestinl sph. -e. It is important to realize that the D motion 

is not 3 ftinctioii of tile satellite's spin rate 0 . 

A 

h 

h 

A 
The obserwblc for RIodc.1 4 is cos where r is the .mgle between N and 

= K1, I) . Cos c Tvc.ries as a function of tlie angle a) of the 
I1 

h A A  

. D . Thus COS 

satcllitc in  i ts  spin cyclc. Tlic motion is ncnr-periodic with tlic fundamental 

lariod Iwhg tlw sntcllilc's spin Iwi'iod 9 / w  . Thcrc also is a slow vnrintion 

due to tlic niotion of 8 . Cos c is observed at the horizon crossing times t I1 

I 3-66 
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SATELLITE SPIN AXIS 

Figure 3-9. Gcomctry for Rlodcl.I--Horizon 
Crossing Tiinc Jlodcl 

I' 
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A A h A 

when L and 1) coincide. Because L is orthogonal to N cos I: = 0 at I1 ' 
t = tlI . Thercfore, the y and y equations are 

C 

.. 
y = O  

€io 

computation. Thus, 

where y is evaluated at the horizon crossing times t 

Resolution on frame GI is  employed in the y 

c 

C 

Referring to Figure 3-1, 

where 8 (2) , c (x) , and Ayw) are the usual coordinate frame transforma- 

tion matrices. From the definition of frame €1' and the vector N 
H 11 

H' 

3-6s 
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4 1 '  
I1 

The scalar cquntions for K 

Equation (345) mid pcrforming the matri.. multiplications. The result i s  

are obtaiaed by substituting Eqsation (346) into 

.. 

(3-47a) 

AGI The scalar equations involving: D can be obtained with the aid of Figure 3-9. 
- __ 

(3-48b) 
d 

$GI. %GI = 1  (3-48~) 

At any stage of thc OABIAS computations, numerical values (or estimates) for 
A GI all pamrncters in Equations ( 3 - 4 ,  except L) 

tions (34Sa), (348b), and ( 3 - 4 8 ~ )  constitute a set of scalar equations which 

can be solved for tlic three components of fi 

, are available. Hence, Equa- 

GI . Because the derivation of the 
4 1  

* nlgoritlun for 11 is lengtliy and not csscnti:il for thc discussion of hIodel 4, 
AGI 

it will bc dcfcrrcd to Section 3.5. IIDWCVCL', it slioiild be noted that I> is 

LL function of thc fotlowing clcmcnts of : s1 , s2 , Ay , AP, BII , and At 

. - .  
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The ccpations for blodcl 4 are (3-43a), (3-44), and (3-47), plus the solution of 

Equation (3-45) for D . In addition, Equation (3-20) is  requircd to calculate 

the elements of A 

e1 

and a suppl'ementnrg calculation of P, i s  necdcd. Thc 
u -GI algoritlim also requires I t  and the nominal mounticg argle 7 as inputs. 

S 

As in 3Iodel4, 0 (and hence A) is evaluated at the measured horizon crossing 

time t . R (and hence p ) is evaluated at t + At where At is element 

x of ?( . These are the two places where enters into the Xodel4 

mathematics. A check of the equations should show that the E elements 

-GI 
H C H 

12 

I 
# J ~  , AT,  9, which appear in Model 4 are the same as in Model 3: s1 , s2 

or eH , A P ,  (3 , fH 0 -  and At.  

3.6.5 Model 5--Sun to Earth-In and Sun to Earth-Out Dihedral Angle Model 

Model 5 uses two elements of : the Sun sighting time t and either the 

When horizon-in crossing time t o r  the horizon-out crossing time t 

the user requests Model 5, separate calculations using t and t and then 

t and t are performed. In the interest of simplicity, the present di AIS- 
8 HO 
sion and notation will not distinguish explicitly between horizon-in crossings 

and horizon-out crossings. 

S 

HO HI 
8 HI 

The geometry for Model 5 is shown in Figure 3-10. The left portion of the 

figure shows the geometry at a Sun sighting time t ; the right portion shows 

the gcometry at a horizon crossing t i n e  t Since the spin rate w is con- 
6 

I1 - 
stant, the total spin angle change between t and t will be w(tH - ts) s H 
The observable for Model 5 is (tH - ts) . Thus 

Y = tH - ts (3-49) 

3-70 . .  .. 
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SATELLtTE SPIN AXIS 

Figcrc 3-10. Ccoinctry :or AIodcl !j--Siin to Earth-In and 
Sun to Earth-Out Dihedral Anglc b Jdcl 
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Tlic basic cyunlion for tho modcl observation y 

aid of I'iyrc 3-10. 

can be deidopcd with thc 
C 

- As -+ A11 - g$I - 2nn)  (3-50) 
1 

y, =';J IA45 

A A  
as shown in Figure 3-10, i s  lhe dihedral angle between the U-S plane *d5 ' 

and the 2-6 plane. &/u is the change in the Sun sighting time t due to 

Sun sensor misalignments € and AB. Similarly, All/@ is the change in 
t due to horizorl scanner misalignments € and AY . (bH/W is the time H €I 
required for the satellite to spin through the azimuth angle (b bctween f ie  H 
Sun sensor and the horizon scanner. 2Wn , where n = 1 , 0 , or +l , is an 
additioml term which is required to make the angle inside the braces fall 

within the proper range under all conditions. 

s 

in E&ation (3-50) is computed using the well known dihederal angle ex- Ad5 
pression 

. .  

where all vc. tors are resolved on frame GI. 

hC1 As notcd prc!viously, U 
t = ts . The clcmeiits of b 

is providcd by ephemeris d a h  and is evaluated at 
/?GI are s arrd ;2 , which are the state vecbor 

2 2 $31 
1 

- s  - 8  is com- 1 2 '  
elements, and s wliick 1s obtained via ' s  = *,/l 

putcd using thc tccliniquc summnrizccl in thc Blodcl 
4 1  in Section 3.8. When C O ~ I I ~ U ~ ~ I I ~  I) , tho vector 

3 3 

t t t  + A t .  
11 

4 discussion and dclincatccl 

QG1 is evaluated at 



Thc tertii A s  in Equation (3-50) is computed csing the two spherical triangles 

associntcd with the Suu sensor ir! E'ibmre 3-10. From the upper triaugle mid 
- ,  the'law of sines, .. 

sin E = sin c/sin 8 

From the lower triangle and the law of sines, 

s in E sin (90 - B) 
sin A sin A s  = 

- 
Combining Equations (3-52a) and (3-520), 

sin c cos fl  
sin@ sin A sin As = 

_. ._ 

. From the lower triangle and the law of cosines of angles, 

cos A = sin E sin# 

(3-520) 

(3-52b) 

(3-52~)  

(3-52d) 

6 

Comparing Equations (4-52a) and (4-S2d) shows that 

A = ~ O - F  (3-52e) 

Thc final cqtialint for As is obtaiitcd by substituting Equation (3-52e) into 

(3-52~). 

AS = arc s in  (tan c ctn j9) 

. 
3-73 
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When using Equation 13-53), B is ccimputed as follows: 

' AGI /.GI 
' B=*arc cos (U s (3-54) 

The rcmaiiiing task is to develop tlie equation for AI3 to be used in Equa- 

tion (3-50). Figure 3-10 shows that this task is geometrically identical to 

the development just  completed for computing As . Hence, Equation (3-53) 

can be employed directly with appropriate changes in variables. The result 

is 

AH = arc sin [tan Q c t n ~ l  H ;3-5!3 

where y is calcul2ted -:ran 

(3-56) .?GI . 6GIl  y = a r c c O s C b  

In summary, the equations for Model 5 are Equatiwls (3-49) through (3-51) 

and (3-53) through (3-56). A check of these equations shows that Model 5 uses 

tbe following elements of 5 : sl , s2 , 
and A t .  

3.6. G Modcl G--Eat*th \!'i?th 

hlodcl G uses two elements of : Lire horizon-in crossing time t and the 

I 0 
o r @ H , A F , w , t , € H ,  

. .  

*r'nl - 

HI 
t . The observable is the difference b e t w e n  
HO hori;zon-ou t c )-os s ing ti rl? c 

thcsc two timc,r.. Thus 

I' 

(3-57) 

. 
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Mgurc 3-11 sliows UIC geometry for hlodcl 6. hlodcl 6 is  mnlhcmaticnlly 

identical to 3lodcl 5 csccpt the Sun time and gcomctric variables of Nodel 5 

ore rcplnccd by tlic Sun time and. geometric variables associalell with fie other 

hoyizon crossing. 

The basic y 

The result is 

equation for Alodcl G can be written with tile aid of Figure 3-11. 
C 

Equation (3-55) is analogous to Eq~ation~(3-50) for 

shows that AHI and A H  are identical in value. 0 I 

(3-58) 
J 

Model 5. Equation (3-55) 

Hence, they cancel one 
0 another and do not appear in Equation (3-58). 8' and H H 5 

are dements x 

x O f S .  
6 

\GI .5G' and bo using the I '  in the y equation is computed from fs 
C 

. usual dihedral angle expression 

(3-59) 

whcre all vectors w e  rcsolvcd on frame GI, 

coniputcd by ttie usual method (see Scctioti 3.8) ,  

at t 

cvaluntcd at t + At , 

+ At . 6'' is computed by tlic same 
H I  0 

110 

d-7 5 
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SATELLITE SPIN AXIS 

Y 

CWTCIAL BODY OlSK ON 
CELESTIAL SPHERE 

NOTE: MOTION OF CENTRAL BODY OlSK BETWEEN tHO AND tHI NOT SHOWN, 

Figure 3-11. Ccoinctry lor nlodcl ci--Enrth Width hfodcl 

. .. . 
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Model 7 was dcvclopcd for tlrc tr:rnsluuflr,~lrasc of the M E - I j  mission. In 

this phase, the ang~lnr  r;idius of the central body (thc RIoon) wns suificicirlly 

small thnt it could bc approsim:itcd ns il point source for attitude detcrmin:ttion 

purposes. The PAS horizon detector angle y ,  was stepped in a prcdctermined 

manner. The telenietercd dnta includcd the relative times (1 - t ) when the K s  
central body horizon was detected and the scanner angles y at these times. 

The geometry for Model 7, shown in Figure 3-12, id mathematically similar 

to Model 1. The observable for Model 7 is the horizon scanner angle 

The observation equation can be derived usir4 Figure 3-12 and the law of 

cosines of sides The result is 

c 

S 

. 
8 

= -Ay + arc cos --- 
7, [cy;) 

Cos y can be computed &s folhws: 

cosy = - sG' 

Therefore, the hJodel 7 equations for y and y are 
C 

Y ' Y s  

(3 -G 0) 

(3-6 1) 

(34%) 

(3-G2b) 

..G1 In Crc RU-D application, 11 

ncciirnir to *O. 5 spl I Iwriod. 

was computcd at frame times which were 

3r.77 



CENTRAL 
BODY 

CENTER OF SATELLITE’S . UNIT CELaTIAL SPHERE 

a 

Figure 3-12. Geometry for Model ?--Small Target Model 
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Equation (3-62) shows Unt the followiug elemcnls of appeared in hlodcl 7: 

s1 , sz AY and C . 11 

3.6. S Xlodcl S--Sun to Enrlh hiid-Scan Dihcdrd Anglc hlodcl 

blodel 8 originally wns designed for the RAE-B mission and, like Model 7, 

approximated tlie central body as n point. Ilowevec, Model 8 heas recently 

been modified to eliminntc the restriction that the central body must be small. 

The present discussion covers only the new version of Abdel 8. 

Model 8 uses three elements of : the Sun sighting -ime t and the two 

HO horizon crossing times t and t 

in Figure 3-13. The hIodel 8 observable is the time interval between t 

the midtime between the horizoo-in crossing and the horizon-out crossing 

0.5 hHI + t 

S 
The geometry for Model 8 is shown HI 

and 
S 

1 . Thus HO 

p = o . 5 c ~ I + t H o l '  t S (3-63) 

Model 8 is mathcmatically similar to Model 5 except t 

are replaced in Model 8 by 0.5 [t + t of Model 5 are 

used for the Model 8 dihedral angle (A ) computation. The equation for the d 
model observation p 

aunlogy to the corresponding Model 5 result-Equation (3-50). It is 

and t of Model 5 HO 
h 1 . Also ' GI D HI HO 0 

can be obtained with the aid of Figure 3-13 or by 
C 

I In I.:cluntion (3-6;). io mid d are the horizon dctector azimuth mglc ele- I1 11 
ments s and s . hlalcl S tliiia cmploys tlic nvcmgc azinit'h mglc of tlic 

horizon delcclor. 
5 G 

I' 

b . ._ . 

.3-79 
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Fipirc 3-13. Ccomctry for hlodcl 8--Sun to Earth 
hlid-Sc:m Dihedral Anglc hlodcl 
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Thc dihedral niiglc A 
dS 

by using thc Jiodcl 5 result--llquntion (3-51). 

In fact 

is sliown in Fib-re 3-13. 11s equation can be oblaincd 

- .  .. 

(in) + Ads (out$ 
*dS 

and 

y, (Model 5,  io) + yc (Moael5, 

AGI where all vectors arc resolved on frame GI, U is computed at t = t . 
A s  and AH were defined previously (see FigLre 3-10 and Equations (3-53) 

and (3-55)). For As, 

8 
Y 

As = arc sin (tan c ctn 8) 
- -  

where Is is compdcd from 

(3-663) 

.3-81 



For AIi , 

AH = ai4 s in  [tan ctn yl 11 

where y is computed from 

(347n) 

Y =arc cos [cos c cos (V + Av)] (3-6rn) H S 

In summary, Model 8 employs Equations (3-63) through (3-67). A check of the 

equations sliows that Model 8 uses the following elements of 5 : s1 , sz , cH , ' I , A P ,  U y  A y ,  C y  and A t .  @HI @H 

Y 
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OA13IilS uses Uic following equntiop to compute the n n g h r  radius P o€ the 

centr:il body Oii tlic unit cclcstinl sphcrc 2s scen from the a;qtcllite: 

P = P c + A P  (3-68) 

where P 

a bias element which is includcci in the stzte vector S . 
is computcd detcrministic:tlly using orbit infoilnation and AP is 

C 

OABIAS providcs two mcthods for computin, 

central body is spherical; i. e., central body oblateness is omitted. Fig- 

ure 3-14 shows the geometry for this case. For notational simpIicity, the 

magnitudes of vectors wi l l  be referred to in this discussion as they are desig- 

nated in Figure 3-14. By definition, P is the angle between the vector to the 

center of the'centrai body -R and the horizon sensor line-of-sight vector 

at a horizon crossing. At horizon crossings, L is tangent to the cectral body 

surface. Hence, for a spherical central body, 

radius vector shown in the figure. By simple trigonometry, 

. The first  assumes that the 
pc 

C 
A 

a 

is perpendicular to the 

e 

wlicre 0 dcgrcc s P s 30 dcgrccs , R 

bcly, ,and h is a uscr-supplicd correction. R is obtniucd from orbit31 data. 

is the iiomin.22 radius of tlic central 
C e 

Thc sccoiid p coi1iputat:on nictliod nllo\vs d d n t c n c s s  to be talccn into account 
C 

whcii tlic ccntral body is 
otic which uscs I.:qti:itioti 

the E:\rtii. Thc 

(349) will1 Jt 
e 

m ntlrcnmticnl model is m i  approximate 

rcdcfiiicd to bc the gcoccntric radius 

!. 
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of Earth at thc horizon crossing point. R 
equation: 

is computed by the following e 

.. 

3 s 2 A + c2 SA + h 3 (kilometers) = 6378.16 e (3-70) 

where X is the geocentric latitude and ct and c are constants which 

default to 0.0033528 and 0.0, respectively. c s X permits the user  to include 

seasonal var ia t i~ns  in the effective thickness of the atmosphere. 

2 

2 

In order to compute R 

horizon crossing on the Earth's surface must be known. However, the com- 

putation of this location requires knowledge of the value of R . Because the 

equations of the model are highly nonlinear, an iterative procedure is needed. 

The main steps employed by OABIAS are summarized below utilizing the nota- 

tion in Figure 3-14. 

with the oblate Earth model, the location of the e 

e 

. -. . ~ 

1. 

2. 

3. 

The latitude of the subsatellite point is computed as follows: 
0 

x 0 =arc sin [-a GI' B 

AGI' -R 

unit vector along the z-axis of frame GI', z 

should be noted that if a 45-degree rotation has been made, the 

vectors must be retransformed to frame GI. serves as the 

initial estimate of the latltude of the horizon crossing point. 

is obtained from orbital data, and because GG1t is the 
&I' 
GI' = COOIIT . It 

0 

R is compted using Equation (3-70). The latitude X obtained 

in step 1 is used in the first pass. 
C 

P 

obtained from orbitnl dnL? and h is supplied by -the user. 

is coniputcd using Eqintion (349) with R 
C e 

from step 2. R is 



4. The unit horizon crossing vector tcrl is computed in subroutine 

CONES using iuputs -R 

X and ys ), i i ~ d  P 

corresponiing to Earth-in and Earth-out crossings. The correct 

one is estnblished with the aid of subroutine PIIASE. 

h G I  l ACI' (from orbital data), S and y (from 
(from step 3). CONES returns two solutions 

C 

5. 

6. 

L is computed using L = R cos Pc . * _  

-GI1 
e 

The Earth radius vector to the horizon crossing point R 

computed using 

is 

e 

-GI ' where R 

in step 5, and L̂G" from step 4. 

is obtained from orbit data, L frum the computations 

%GI' GI' 
e e 

7. is now normalized to yield fi . 
8. The latitude A of the horizon crossing is computed using 

9. The program returns to step 2 and continues in a loop until the 

change in Pc computed in step 3 is less than 0,9001 radians or 

until the maximum number of iterations (10) is reached. 

In systcnr testing, i t  has bccn found that convergence usually occurs in one or 

two itcmtions. 

. I .  



blodels 4, 5 ,  and 6 require that-the following set  of nonlinear algebraic equa- 
h G I  . tions bc solved for D . 

i\gGx = cos (y 6 + Ay)'cos c H (3-71a) 

. BG' = -cos (pc + AP) (3-7 lb) 

AGX. fiG1 D = 1  (3-71~) 

The purpose of this section is to discuss the algorithm empioyed to solve this 

set. The variables in the above equations were defined in Figure 3-10. Supcr- 

script GI signifies that OhBlAS uses GI coordinates for the calculation. Let 

the component: I f  S 

Then Equation (3-71) can be rearranged into the following form: 

AI , aG1 and RG' be designated by lower case letters. 

'cos (r + AY) COS - s d 
S n 3 .) (3-72a) 

-COS pC + AP) - r3 d3 
- 

2 2 2  
1 d + d 2 + d 3 = l  (3-72b) 

Assuming that the detcrminsnt (Dcl) of the 2 X 2 coefficient matrix in Equa- 

tion (3-72:t) is not zero, Equatiotl (3-72a) can be rearranged into the following 

form: 

2 x 2  2 x 1  

3-87 
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where 

Det'= s1 r2 - s2 rl (3-74) 

The condition s r. - s r = 0 occurs when the two vectors formed by proj- 

ectiiqg 9 and fi onto plme X - Y of frame GI are colinear. The problem 

can be circumvented (except in the unsclvable degenerate case of s^= &) by 

permuting the subscripts of the 9'' , BGX , and eGE components. 

A A  
1 2  2 1  

Equation (3-74) can be put in the form 

(3-75a) 

(3-75b) 

. . . . "  
where 

(3-75c) 1 =-[s r - s  r ]  
'1 Det 2 3 3 2 

Y 

(3-75d) 1 =-Is r - 8  r 3  
'2 Det 3 1 1 3 

(3-75e) 1 = - [r cos (y + AY) COS fH + S2 Cos (Pc -I- AP)] 
'1 Det 2 8 

[r cos (y .e AY) COS EfI + sl COS Goc -t AP)] (3-7s) -1 
%=E 1 8 

Subs tilu t i q  I~qunlioas (3-763) and (S-75b) into (3-72b) and rearranging yields 

(3-76) 2 r a d + 2 n  d + a  = O  I 3  2 3  3 
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where 

-. 
2 2  

a1 = 1 + p1 + p2 

2 2  
a =ql +q2 - 1 3 

Solving Equation (3-7G), 

(3-77a) 

(3 -7 7b) 

(3-77c) 

(3-78) 

Equations (3-75), (3-77), and (3-78) constitute the basic algorithm for solving 
A GI , m d  dg of D . However, the 

1 '  d2 Equation (3-71) for the components d 

problem of rcsolving the sign ambiguity in Equation (3-78) still remains. 

Geometric considerations show that one sign signifies a horizon-in crossing 

kI and the other, a horizon-out crossing t 

of whether a tIII condition or  a t 

itself, sufficient to resolve the ambiguity. Therefore, OABIAS first computes 

the horizon croxing  vector (D ) using the plus sign in Equation (3-78). The 

subroutine PIlASE thcn computes the dihedral angle V from the 6+ - S plane 

to the 6 - [-E1 plane. V i s  shown for both the in-crossing and the out- 

crossing C ~ S C S  in Figure 3-15. The dihedral angic computed by PIIASE is 

measured in thc conventional right hand sense and will be in  the range from 

0 dcgrce to 360 degrccs. Sincc thc angular radius of the Earth is always Icss 

than a right ;iliglc, V always lic in lhc range frcim 0 dcgrce to 180 dcgrces for 

an out-crossing. For nn in-crossing, u clways will be in the range from 

180 dcgrccs to 360 dcgrccs. Ilcncc, the sign ambiguity in Equation (3-78) cnn 

. However, mere knowledge 

condition is being processed is not, by 
HO 

HO 

.-GI 
A 

+ 
+ 

+ 



HORIZON*IN. CROSSING 

Ffgurc 3-15. Rcsolution of Sign R m b f y i 2  c f  
Horizon Crossfng Vcctor D 

.. 
3-9 0 
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bc rcsolvcd by cliccking whcthcr V is within the correct range. The exact 
4- 

crltcria is as follows: 

Horizon 
Cr xsina 

o Y s iao + 

180 V 3G0 + 

in 
out 

in 
out 

Corrcc t Sign 

h 
A check cii the D computation equations shows that the following elements 

of X are used: s s 

appears implicitly through R . 
217, QH , and AT . The element At of X - also ' ' 2 '  AGI 

- 

.. . , .. 

i 

I' 
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3.9 \vEm-rIxci I:.L\c*roIts OF ~111 . :  ODSI.:RVATION AIOIIELS 

Each timc one of tlic eight observation models in OABIAS processes au obser- 

vation j , tlic preliniinriiy operntions include U u  calculation of a weizhlitg 

factor W . EaAi modcl lins its own distinct equation for coinputiug w. . 
These calcuhtions use the foilowing user-supplied inputs: 

1 1 

The square root of !he variance of the error in the Suu angle 
OB-- 
measurements (degrees) 

o --The square root of the nr i ance  of the e r ro r  in the Sun sighting 

time me.2suremc;lts (seconds) 

2. 
S 

3. cr --The square root of the variance of the e r ro r  in the borizon 
€i 

crossing time measurements (seconds) 

4. 0 --The square root of the variance of the error in the RAE-B PAS 

angle (degrees) 
Y 

. .  

The optimum technique for establishing the observation weighting factors w. 
I 

F ~ S  discussed, in general terms, in Section 3.3.3. Ideally, each w should 
1 

be the inverse of the variance of the error in the observation which is to be 

processed.' This conclusion assumes that the er rors  in the observations are 

statistically uncorrelatcd. The final result of Scction 3.3.3 was Equa- 

tion (3-llc). 

With niodification in notation to tailor it to the present discussion, this  squn- 

tion can be writlcn as 

CSC w1~0rts 011 : i t 1  iludc estimation haw bccn incansistcnt in thc use of tlic 
t m n  v'wigliling fnclor" and thc wi*rcsponding symbols W or w . Thc 
actual 0A;;I.iS c.otliiig UPCS Qic ilAva 
cnt discussion :iiitl tlcsigwtcs thciii by 

1 

.cs of the wcigl>titlg factors of thc prcs- 
) . 

.. . . 

I '1 ( - ' I-. . . . __ . . 



(3-79) 

where z significs the residual (y. - y .) of observation j and wir signifies 

the optiiiium wighting factor. The third term on the right side involves the 

assumption Uiat the statistics of the error iu the horizon crossing time meas- 

urements are identical for in-crossitqs and out-crossings. 

1 1 CJ I 

The values of the partial derivatives in Equation (3-79) depend upon the model 

being processed. For example, with Model I (the Sun angle model) the basic 

measurement .8 enters z through y ; y = B . Hence, bz /aP = ay/afl = 1 

and the remaining partials a r e  zero. With Model 8 (the SWI to Earth mid-scan 

dihederal angle model), y = 0.5 + bo] - ts . Hence, 6z/bB = 0 ,  

w a t H I  = az/atHo = 0.5,  and az/ats = -1. 

A modification to Equation (3-79) is convenient for those models (2, 3, and 4) 

in which the measurernent-dependency enters the residual z via the rotation 

angle 0 in the y 

adequ P te : 

f .  
computation, For these three models, the following is 

C 

whcrc ( ) sigiifics s , I11 , or 110 . 
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OF POOR QUALIIV Then, Equation (3-79) bccomes 

- 
'80 out-crossing 

- .  

The equations for the partial derivatives by &I are given in Appendix A. 
c o  

OABIAS has used two methods to compute the weighting factors; both are avail- 

able in the current version (see Table 3-2). In principle, because Method 2 

yields weighting factors which are in closer agreement with the theoretical 

idaal w* , it should be superior to Method 1. This can be seen by a careful 

comparison of Table 3-2 with Equation (3-79) or, for Models 2, 3, and 4, 

Equation (3-80). Testing also has shown that Method 2 yields better results. 

The question of resolution effects in the weighting factor computation nom will 

be discussed. The conventional statistical filtering theory which was implicitly 

u s d  in the preceding development assumes that the errors in the input meas- 

urements can be modeled statistically as white noise. With digital systems, 

the resolution error  due to finite word length of the sensor or processing tech- 

niqucs is sometinics si,gificant with rcspect to this me of noise; in some 

cases, may completely dominate it. OL attitude determination systems, the 

resolution of digital Sun sensors, in particular, can be sufficicntly great that 

diflicult cpcstiotis arc raised on how to haildlc or wcight 'he dah.  It is wcll 

hiowti that errors due to rcsolution can bc trented as white noise when the 

sign1 is sufficicntly vari:tblc tliat i t  rarcly stays in the same resolution ccll 

on succcssivc nicnsurcmciits. The ncnr-constancy of tlie Sun anglc seen by 
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Model - 

1 . : 

2 

3 

4 

Table 3-2. Weighting Factor Equation Usud in OABIM 

3bscrvabfe Weighting Factor (W .) Equation 
1 

Method I Method II 

B 

-0 .  R 

cos p + R . z 

NOTE 1: See Appcndiu A for 81c equations for the partial derivatives 
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spin stabilized satcllites, howevcr, makes this assumption difficult o r  impos- 

sible to justify in proccssing tlic data from the digital Sun sensor. 

The question of how, in theory, the resolution phcnomenz can best be handled 

has not bccn sddresscd in this document. The equations in Table 3-2 assume 

fhat resoktion is negli.giibIe .md, therefore, that the er rors  in the Sun angle, 

Sun sighting times, and horizon crossirg .;mas c3n be modeled as white noises. 

"he square roots of the variances of these noises are u 8 '  os 9 UH s a d  0 

Thr single exception is 0 

cell width. 

Y 
in 3Iethod 1 which is modeled as tnL resolution e 

... . 
.. . 

I' 
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3.10 SUEI3IARY OF SIXTION 3 

The elcinents of the state vector used by OABIAS arc as follows: 

A 

xl(sl) component of spncecraft's unit spin vcctor (S) 

along the x-axis of franc GI 
h 

x2(s2) cornpouent of S along the y-axis of frame GI 

initial phase angle of the spacecraft in its spin 

cycle 
x3'0°' 

X p Y )  bias on horizon sensor mounting angle 

azimuth of the horizon sensor relative to the Sun 

sensor at horizon-in crossing 

azimuth of the horizon sensor relative to the Sun 

sensor at horizon-out crossing 

x,(AP) 

%,(a& 
X , W  spin rate 

Xl0W 

bias on the angular radius of the central body 

bias on the Sun angle measurement 

tilt of Sun sensor reference slit plane .. 

PAS horizon detector plane tilt (RAE-B) 

timing bins in spacecraft orbit data 

x1 1%) 

X12(At) 

A summnry of cnch of the eight OABIAS observation models follows. 

Modcl l--skn Aiiglc hlodel 

Y ' 8 ,  

3-97 
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whcre f l  = nicnsurcd Sun angle 
31 
U = unit Sun vector 

S = unit spin asis vector 

GI = resolution on frlnie GI 

A 

A 

Model 2--.Sun Sighting Time AIdel 

y = a  

$c" n G I  
Yc = NS 

23 

A 
where NS = unit vector perpendicular to Sun sensur reference slit plane 

a.. = elements of transformation matrix A from frame GI to frame SC 
11 

Model 3--Nadir Vector Projection Model 

i 

n G l .  2CiI = COS Goc + AP) + R 
yc 

4 T L = c0013 

whcrc pc = coniputcd angular radius of tlic ccntrd body 
n 
11 = unit vcctor from ccntrnl body tow:wd spcccraft 

I, = unit vcctor along horizon dctcctor line of sight 
h 

. 

3-98 - .  
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BII = tr'ansfornration matrix from frmic 11 (Figtire 3-1) to frame SC 

T 
TyW) = 

-siny 0 c o s y  
S 

= nomind mounting mglc of horizon detector reiative to spin axis 

Modcl 4--IIorizon Crossing Tin~c Model 

GI T AH* 
H H  B H = A  B N 

"E' = coo13 T 

n 
where N = unit vector perpendicular to PAS plane H 

GGr = unit vector on central body perimeter at horizon crossing point 

Model 5--Sun to Earth-In and Sun to Earth-Out Dihedral Angle Model 

Y'tH't S 

1 = - [A - As + A11 - bH + 2Tn1 Yc .w d5 

3-09 



Ati = arc  sin [tnn c t n y l  I1 

y =  arc cos C$. 81 

= mcnsured horizon crossing time 

= measured Sun crossing tiinc 

= dihcdml angle bctwecn spin mis/SUnlinc planc and spin axis/ 

ti I \VllC 1% 

horizon vcctor planc (Fmmc GI resolution is uscd with dl vectors) 

As = correction due to tilt of Sun sensor reference slit plane 

AI1 = correction due to tilt of PAS horizon detector plane 

NOTE: t and t are measured by different sensors separated by dihedral 
S H an@ 8, 

hfodcl &-Earth Width Model 

y = t  . - t  HO HI 

whcye t = measured horizon-in crossing time 
111 

= mcnsurcd horizon-out crossing time 

= dibcdral nnglc bctwccn spin axishorizon-in plane and spin asis/ 
horizon-out plmc ( I h m e  GI rcsolution is used with all vectors) 

tI IO 

. .  . .  8, = horizon-in crossing unit vcctor 

fi 
0 = horizon-out crossing unit vcctor 

I' 
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Y = Y ,  

= -Ay + arc cos 
yC 

wherc y = measurcd PAS horizon detector angle 

Modcl 8--Sin to Earth Mid-Scan Dihedral Anglc RIodel 

S 

y = 0*5 CtHI + t 3 - t - HO s 

- CB ' $IC 0 I 
h 

+ arc tan (0 

~3 = arc sin (tan Q ctn @ 

p =  arc cos (V S) 

H AI1 = arc sin (tan € ctn y) 

y E arc cos (cos Q COS (yS + AY)) H 

wlicrc frame C1 resolution is usctl with all vcctors. 

3-101 . .  
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AIodcIs 2, 3, and 4 rcqiiirc tlic transformation matrix A whose conrpotients arc: 

1 -- A =  

1 
8 s c4- s2sa  

-s s so - s2 Cb 

s 8 c @ + s  

-s s s e +  s 

1 3  2 3  

1 I 1 3  2 3  

where s3 =ij- 

and c and s si-pify cosine and sine, respectively.- 

The equation for the transformation matrix B shown in Models 3 and 4 is H 

- 
"Do' (used for Models 4, 5, 6 ,  and 8) is computed by solving the following set of 
equations: 

H gGT fiGT = cos ( y  + Ay) cos c 
8 

Tlic dcpciiclcncc of thc obscr~,?tioa niodcls on tlic slat@ vector conrponciits is 

shown in 'I'nblc 1-1. . ... 

3-10:! 



Thc cquntioiis of tlic basic recursive proccssing algorithm implemcntcd in 

OAI3IhS arc: 

, 

X 
-fR 

= reference vector ilsed in processing observation j . 
The equations f .  T the weighting factors (w to w ) used in processing the 

eight observation models are in Tablc 3-2. 
(1) - (8) 

- .  

I' 
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This appaxlix prcsciits equations for thc dcriwtivcs dy /ax. which ~1.c  used 

in tlic OAl3IAS ot)scrvation models. Scctioiis A. 1 through A. 8 prcscnt thcsc 

eat 

c 1  

.om for each of tlic cight niodcls in  iiumcricnl sequcncc. Scctiun A. 9 

prusciils eq. ntfons for thc derivatives dA/dx bB/axi , and &dxi of i '  
matrices A and B and unit vector D which arc  used in the prcccding cight 

scc' ms. 

In the intcrest of conciseness, the dcrivatives by c i  /ax which are  zero are 

not shown explicitly; all others are. 

Two equations lor each derivative are  included with Models 1, 2, 3, 4, and 7. 

The first equation in each cast: is in a form which is intended to provide max- 

imum understanding of the geometrical far ors (mainly the relationship between 

significant unit vectors) which influence the derivative's value. The second 

equation in each case is in a form which is analogous to that used in the OABIAS 

coding. Single equations which serve both functions are given for Models 5, 6, 

and 8. The second equations me not idvtical to the coding in all cases. In 

particular, the appendix employs a fuller use of rotation matrix notatioil with 

Models 3 and 4 than does the coding. 

The main notation mid notationd tcchniqucs used in this appendix were dcfincd 

prcviously in Scction 3. Attwition 1s callcd, in pnlgt i~~lai*,  to Figure 3-1 which 

shows tlic rclntionsliitx bchvccn thc various coordinntc fmmcs and to Tablc.3-1 

which clcfincs thcsc coordin:itc frnnics mid thc significant unit vectors. Loner 

casc Icltcrs (ti s ctc.)  arc usccl to s i p i f y  tlic coiii~~oiicnts of unit vcctors 

(U , S , ctc.) i11011g tlic ;IWS of I.'r:inic GI. 'l'lic tlcfiiiitions of tlic 12 stntc vc*cloi* 

elcmcnts x 

i '  i '  
h A  

n1.d h i r  itltcrt1:itc symbols arc givcvi in Scction 3.10. a 
I *  

A-1 
' - 1  . .., 



Subroutincs: SAN FUN 

Obscrv ntion Equations: 

Z = P M - Y c  

= - @ + arc cos >( yc 

A h  
where X = U S SCC c 

Partial Derivatives: 

I’ 

.. 

A-2 
- - r  - 
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Obscrvnti on E qu:i ti 011s: 

= = -yc 

3 

i=l 

A h  
= u N~ = C uj (azi cos c + 3 sin F) 

3i yc 

Partial Der in t ives: 

- = - -  ayc n ai$ 3 aazi 

ax, as1 bsl i=1 a sl 
- u*  - = c Ui (cos € - 

a a ~ i  
3 

i=l 

aYc aYc A - = - -  axg au - - (t - to) u ' q cos € = c u. 1 (cos F - am 

I' 

A-3 

! 



A h  h 
where c: = i cos 3 -e j sin 0 

$ a =  - i s i n @  + j c o s d  
A 

z 
4 

2 
h h A 

NOTE: bXS/,Ssa (also dL/asa mid aN,,/as, which nppcar in Sections A.3 
and A.4) nrc t!ic p;\rti;il dcriv:itivcs \vhich would bc detected by 33 

obscrver wiiosc oricikition \vas iurariant rclativc to Frnnic GI. Thesc 
partials do not appear explicitly in thc 9A13IAS coding. Algebraic ex- 
pressions for thcm wcrc not dcrclopcd in the present study. 

A. 3 MODEL 3--NADIR VECTOR PROJECTION hIODEL 

Subroutines: . LRFUN, EPHEhlV, VECROT, ABIATRX, APARTS 

Observation Equations: 
- 

= 'Yc 

A A  
= c o s P + R - L  

YC 

Partial Derivatives: 

A -4 
1 
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= 0 (out-crossing) 

aYc aYc 

aoH 
-=-- - 0 (in-crossing) 

0 

1 $X.T T aBO AHO' (out-crossing) h A h  

= R * ( S X L d = -  A o L o  - im 
aOH 

byc aYc 
b"7 bAP c C 

-Sin P = -cos p sin Ap - sin p cos Ap -=-= 

whcrc 

I' 

A-5 . .  - 



P = P c + A P  

0.5 cosp = ( I - ( R  + h )  2 /IRI) - 2  
C e 

6 

where Re = Earth radius at  horizon crossing 

h = effcctivc height of atmosphere 

NOTE: I signifies an in-crossing and 0 sigiufics nn out-crossing; ncitlicr 
symbol is uscd with cqwtions or nrinblcs  which arc applicnblc to both 
crossings. 

I’ 

A-G 
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A. 4 AIOUEL 4--IIORIZON CIIOSSIMC TIXIE h1OI)EL 

Subroutiucs: LKFL'N, AhIATRX, LPARTS, APARTS 

Obscrvn tion Equ:i tions: 

= = OYC 

A -  
gc = D * NH 

Partial Derivatives: 

= 0 (out-crossing) 

A-7 
I . I - 0  

I' 



(out-crossing) A A  4 I . T  T "0 $110 
0 I f 0  A -  = S (Nno X D) = D 

Ma 

A GI ..GI + fiGI,T AT bB AH 
abH NH 
- 

= (E) NH 

*GI T h S C  whcrc N = A NII ir 

A e = dcfincd in Figure 3-9 
a 
4 

V = sp;icccnft vclocily vcctor 

L' 

A-8 
c ,, ' .' 
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A 
NOTE: In tlic niotlcls in which I) :ippcars, tlic dc rivativcs arc cvsluotcd at 

thc mC:kStiWtl horizon crossing times. A s  a result, i t  would bc possible 
to rcplncc û by 2 in thc i3yc/i3xi equations. &/axi however can- 
not be rcplaccd by $/axi . 

A.5 AIODEL 5 - - S L .  TO EA3TII-IX AND SUN TO EARTII-OUT DIIIEDRAL 
ANGLE AIOUEL 

Subroutincs: DIAFUN, LCOMP, LPARTS 

Observation Eqwtions: 

Ads = arc tan (=) TOP 

As = arc sin [tan c ctn /3] 

A h  /3= arc cos (U S) = f (sl, s2) 

AI1 = arc sin [ h n  f clu y ]  i r  

A h  
y = arc cos (U S)* 

I' 

A / \  
*1) S = COS F COS (y  + A)') = f A?) I1  S 

A-0 
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- scc As csc B tan € U -- 
as, 

3 
ax as, 1 

- scc As csc fl  tan c - = - = -  3 
axz as, w 

- - sec AH csc y sin € sin (ys + - 
1 3 - = - -  -- 

ax ~ A Y  o a w  H 4 

(in-crossing) byc aYc 1 
- 5 -  = - -  

w ax T 

5 bOH 

= 0 (out-crossing) 

- 1 .  - - - (out-crossing w 

A-10 
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where 

- 

aYc aYc 1 2 

%O a€ 0 
- = - -  - -- sec As ctnB SCC c 

ax12 aAt w aAt 

. -. . 

A-1 1 
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and 

(i = 4) - 
dAY - = I  
% 

.. . -- ( i =  11) dc H 

% .__ 

- = I  

-..- 

NOTE: a B/ax. # 0 in any of the above expressions. v 

1 

A. 6 MODEL +-EARTH \VIDTII MODEL 

Subroutines: DIIFZN, LCONP, LPARTS 

Observation Equations: 

A-12 
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T O P = $ * ( 8 1  xG0) 

BOT=hD ijoL(5*8$($*6 )=G1*6  - c o s  2 c cos 2 ( y  + f l y )  
I 0 0 H S 

Partial Derivatives: 

d 

a% 1 
- = -  = - (in-crossing) 
ax w 

= 0 (out-crossing) 

1 1' 

w 
I - -- (oil t-crossing) 
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acH w acH axil 

bAt 0 bAt bX12 

where 

1 ( 1 aTOP TOP aBOT) ----- aAd, - =  
ax, 2 BOT ax, BOT2 axI 

\BOT 
Y 

A A  a SI A A  aso 
= - ( S x D  ). - + ( S x f ) * -  bTOP - 

AXi o ax, 

2 dcH + f i  *- .I. 2 cos 6 s i n €  cos ( y  + Ay) - 
as i I axi I1 I i  S dxi 

aD0T * 
-= D o ' =  

i 

2 dAY + 2 C ~ S  C cos ( y  + 3 Y )  sin ( y  , + 3 y )  - 11 S s 

I' 

A- 2.1 
. . )  



and 
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(i  = 4) - -  dAy - 1 
9 

(i = 11) - =  dfH 

% 

as For -, see Model 5. 

A. 7 MODEL ‘I--SMALL TARGET MODEL 

Subroutines: ,5 ?BFUN, EPIIEMV 

Observation Equations: 

.._ . 

= = Y s - Y c  

4 

yc = -Ay + arc cos u 

A n  
where 0 = -R S SCC cH 

Part i nl Der i vn t i vc s : 

. 
A-15 
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h 

For 'A , see Section A.3. 
aAt 

NOTE: The mnlhcmatical similarity between Models 1 a id  7 can be seen by 
comparing the above equations with those in Section A. 1. 

A. 8 MODEL &-SUN TO EARTH MID-SCAN DIEEDRAL ANGLE MODEL 

Subxoutines: DIAFUN, LCOMP, LPARTS 

Observnt ion Equations: 

= = Y - Y c  

4- tilo) $i 
y =  0.6(tHI 

A-IO 
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TOP, TOPO 

0 30T 

A h A  
ToPo = S (U x Do) 

A s = a r c s i n ( t a n r c t n f l )  

AH = arc sin (tan r ctn y )  H 
Y 

A h  
y = are COS (D S )  = mc COS (COS r COS ( y s  + A"/)) = f(cH, AY) H 

Partial Dcr ivat i vcs : 
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1 s<?c Ai1 csc 3 y sin c sin ( y s  + AY) byc a r c  
- = -  = - -  
as aAy w €I 4 

aYc aYc -Yc 

ax, bo cr) 
- = - = -  

2 - tan csc y sin cos ( y s  + ..)) 2 - =- 
acH w 'H H H ( sec AH ctny sec 

aYc aYc 

aXll " 

= -  

wlicrc at&hs is dcfincd in Section A. 5. i I' 

A-IS 



ORiGiiJki PAGE 19 
OF POOR QUALITY 

The equations for Natris A wcre discussed and presentd prcviousIp in Sec- 

tion 3.10. For tlic rcndcr's convcnieiicc, they are repcatcd below. 

a n 11 12 13 

21 22 23 

32 33 

a a A =  

a a 

1 
2 

2 

s s cos0 - s  sin9 s s C O S @ + S  sin0 -COS 6 COS@ 

- - -s s s i n 0  - s  cos@ -s s s i n @ + s  cos9 cos 6 sin@ 

1 3  2 2 3  1 

2 3  1 . - c:6[ 1 3  2 

8 cos6 s cos6 
2 3 

s e x &  1 

where cos6 = s + s  c 

A-10 

c 



sin I$ 2 
cos@ ( s  - s /s ) 3 1 3  

-s a /cos6 -COS@ (S s / s  ) 
1 11 1 2  3 

- = - -  1 - -  bA aA* 
dx as, cos 6 1 

-s C O S @  1 

cos 9 2 
- s in@ (S - Sl/S3) 

3 

-8 a /COS 6 
1 12 

s s in@ 1 

+sin @ (s s / s  ) 1 2  3 I a21’cos 

-(s /s ) cos 6 
. -  1 3  

d.9 aA* 1 -= -= -  
dx as, cos6 

2 

- 
2 .  
2 3  

-a s /cos6 

cos 9 (s3 - s /s ) -sin 9 

-COS@ (s s /s ) 12 2 1 2 3  

-a s /cos 6 
11 2 

-cos @ 

+sing, (s s /S ) 

-sin 9 (s3 - s2/s3) 2 

-az2 s2 /c0~  6 1 2  3 

-a (s /cos 6) 
2 1  2 

cos 6 

-s C O S @  2 

0 

s sin 8 
2 

-(s /S ) COS 6 2 3  

A-20 
I 
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11 =F1 0 

8 
22 

12 
-3 

0 

n 
23 

1 -a 

0' 

A. 9.2 Matrix B Partial Derivatives 

The eqmtions for Jlatris B are: 

T T T  B = T  T T $H 'H 

where 

TfH = 

- T 
TAY - 

H 

H 

cos 8 

sin 8 

0 

€3 

H 
0 -  

-sin 9 

cos @ 

0 0 

H 

H H cos 

cos Ay 0 sin A7 

0 1 0 

-sin AY 0 cos Ay 

C 

A-2 1 
I 
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The partial derivatives of B c,zn be obtained by direct differentiation; these are 

r-sin AY o COS AY 

[-sin 6H -cos 0 H 

L o  0 

0 0 0 1  

H 0 -sin c 

H 0 cos € 

A. 9.3 6 Partial Derivatives 

The computation of 6 in subroutine LCOMP was discussed in Section 3.8. The 
three fundamental equations used in the computation are repeated below. 

c 

COS ( Y s  + AY) cos H (A-la) 

(A-lb) fi 8 = -COS Go, + Ap) 

6*3= 1 
.. 

(A-lc) 

A 
Thc p:irtinl dcriwtives of D with rcspcct to the state vector elcmcnts x 

computcd in  subroutinc LPARTS. TIE dcrivntion of the LPARTS nlgorithms 

we i 

- -. . 



star ts  by diffcrctitiating Equation A-1 to obtain tlic following set of perturbation 

equa tions 

A A h  A 
Lc d D  + 1) dS = -sin (Ys + AY) cos cH dAY 

- ccs ( y  + AY) sin Q dc S H H  

(A-2n) 

3 d s  + 8 - bfi dAt = sin (p  '+ Ap) dAp 
aAt C 

(A-2b) 

$adD^=O 
- . .. 

where d$ is constrained to be 

(A-ZC) 

(A-2d) 

J 

Equation (A-2) defines the perturbation d 8 in 8 which is produced by per- 

turbations dsl  , ds2 , dAY , dAp , dcH 9 and dAt - 
The prcscnt discussion will use the simple symbol R to signify the magnitude 

of z. As bcforc, R will signify the ratc of change of R , and 7 will signify 

the spacccralt's velocity vector. b fi/dAt of Equation (A-2) is the vclocity vcc- 

tor or ii ; lntcr in tlic derivation, it wi11 be spccilicd by the following cquntion 

A-23 



whcre 

(A-3b) 

The second term on thc right side of FAuation (A-2b) is the change in COS p 

due to ttic change riR in R which is produced, in non-circular orbits, by dAt . 
The following cquntion for this  term was developed with the aid of the equations 

for sin p and cos p listed in Section A. 3. 
C C 

The problem now is to solve Equation (A-2) for d 8  . As a tool for a x o m -  

plishing this, the following 3 x 3 matrix M will be introduced: 

. .  . - (A-5) 

The lclt sidcs of Equations (A-23) and (A-2b) do not necessarily imply that the 

vectors arc rcsolvcd upon n coordinate frame. With the  introduction of 3.1 into 

thc dcvr\loimicnt, Iio\vcvcr, it will bccoitic convcniant (although not absolutely 

essential) Lo adsuiiie resolution upon a spccificd frame; namely, framc GI. For 

no1ation:il simplicity, Iio~wvcr, tlic supcrscripis GI used elsewhcrc in the 

rcport to dc-sil;iiatc GI frnitic resolution will bc oiiiittcd froin tlic rciiinindcr of 

this discussion. 
\ *  

A-2.1 
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Arranging Equ:ition (A-2) in a ma!ris format, introducing Equations (h-4) and 

(A-5). and solving for d 1) xiv yields 
A 

h -3 d S - s in  ( y  + Ay) cos i d4y - cos (Y + Ay) sin c 

(A-6) 

S I1 S 

s i n  @ + Ap) dAp - D - -- sin (pc + A p )  tmpc  d a  

0 

aR R 
C dAt R 

d 8  = Al-' 

Equation (A-6) is not mwningful when 31 is singular. The condition of 

singular AI occurs if and only if the three vectors D , S , and 8 are in a 

common plane. 

A general equation relating d D  $0 the state variable perturbations dx is as 

fo llowvs : 

A h  

- -  

A 

(A-7) 

The desired equations for the partials b6/ax.  now can be obtained by com- 

paring Equation (X-6) with Equation (A-7). Equation (A-3) is employed where 

necessr..ry. l o r  t h i s  work, it is convenient to define the columns of M ex- 

plizittJV; i ,  e. , 

1 -  

-1 

The rcsulling a D / b s .  cquations arc as fdlcws: 
I 

A-35 
: . : 
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(A-Db) 

(A-Dc) 

(A-9d) 

(A-9e) 

- = - = -Q sin (p + Ap)  
C 

ai; d B  

aX12 bat -2 

_ .  

Equations (A-9a) through (A-9f) are similar to those implemented in the OABIAS 

coding. An alternate form which better shows the geometric factors that influ- 

ence the b D / a s .  values, however, is possible. To derive these equations, 

M - l  is written in the following explicit form: 

A 

1 

c 

whcre 

Equation (A-IO) can bc verificd I q  prcmultiplying il by Equation (A-5) to 

produce the idcntity matrix. I' 

A-2 G 
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TIE nltcrnatc ion11 of ttic 6/3x. equations is obtnincct by substituting ECjtia- 

tion (A-10) into (A-G) and procecding as befoie. The aE/dAt equation can bc 

siniplificd using Equation (A-2d) and (A-lb).  Thc results 3re 

A 
1 

. .  

( A - l h )  

(A-l lb) 

(A-l lc)  

(A-lld) 

(A-1 If) 

whew tlic dS/ds 

the :il)o\*c! cqu:ilions cnn be rcg:irclcd :is vector cquations pcr sc. and 110t mcrcly 

3s cquntions for vector componcnts along tlic GI fr;ime 2xe5. 

equations arc givcn in Scction A. 5. Unlike Equation (X-0). 6 

A-27 
-.. . 



B. 1 INTRODUCTION 

Thc purposc of th is  appcndis is to dcrivc tlic cquations of tlic basic rccilrsive 

proccssing algorithm uscd by OADIAS. The rcsul ting cquations arc applicable 

to any system which USCS subroutine RECURS (Rcferencc 21) or RECUR! now 

employcd in OABIAS, A generalizcd lenst squares approach is talien in thc 

derivation. 

Section B. 2 discusses the generalized least-squares loss function and then 

derives the batch processing difcrential corrector equations. This is a 

necessary preliminary step in the OABIAS equation derivation. Section B. 3 

presents the derivation of the nonrecursive leas t-squares algorithm. Sec- 

tion 13.4 derives a preliminary set of recursive processing equations. These 

equations a re   ential ti ally identical to the ones in Section B. 3. except they a r e  

directly applicable to recursive processing. From the resulting equations in 
Section B.4, Section B. 5 derkcs  the basic algorithm used in OABIAS. 

References 11, 20, and 22 through 24 provide the baclgg-ound for the derivation 

methods used in this apperidix. i 

The main notational techniques used in the appendix are  as follows. All  sym- 

bols with an undcrbar, but no superscript T, a re  column vectors. Super- 

script T signifies the transpose of a column vector or of a matrix. A1:itrices 

a re  clcsipxitcd by uppercase symbols with no undcrbnr. Lowercase sjaibols 

with no untlerbnr are scalars. The derivative ol‘ a scnlar with rcspcct to n 

vector is consitic~~ct! to tic a rou- vector. Thc tlinicnsions of matrices and 

coltinin vectors n re iiitlicatctl thc first tiiiic tlicg nlqwar in equations. The 

! 

D-1 
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notation cli s t i ti g i  i slics bc 1 w e n  KI ri ablcs and ;i1 gcb rn i c csp res s ions wh i ch a re 

usctl to cotiipiitc tl~c values of these variables. For esninplc, i n  hie cquntion 

Y = P  (ill, 2, t) -c -c 

Y 
elcmcnts of Y 

Parentheses a re  used only in  this manner. 

(AI-, S I  t)  is n Imown nlgcbrnic eqrcssion. The niinicrical vnlucs of tlic 
-C 

arc computctl by inscrting values of - RI , and t into it. 
-C 

. 

B. 2 DISCUSSION @I? THE LEAST-SQUARES LOSS FUNCTION 

The purpose of tbc algorithms dcrived in this appcndix is to compute optimal 

estimates of thc stntc of a systcm using, as primary input, a sequence of 

observations performed on this systcni. The systcni statc is assumed to be 

constant and is modeled as an sxl vector. The symbol will denote the 

unknown truc statc vector. A distinction will be made in the early stages 

of this discussion betwen "arbitrary" estimates of 

by 5, and the optimal estimate %* . The symbol : ^x -0 signifies an a priqri 

estimate of X . 
, which will be denoted 

- 
A generalized least-squares criteria will be used to develop the aigorithms 

for computing - -  X *. IC * , by definition, is the X - which minimizes the 

foliowing loss fiurcti'on: 

A f r  A 

PXP PXl sxs 8x1 

A 
= Y  - Y  = z (Si, q, e)  -z1 -1 -cl -1 

pxl  px l  nxl 

(B-la) 

(B-lb) 
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(B-lc) 

- A  

l'cl=Y (3J , t, S j -r:l 1 -1 (B-Id) 

Tk? 1 subscripts in thc above equations signify thnt the estimate is to be 

obtaincd from 3 set of data designated as set 1, For notational simplicity, 

these 1 subscripts hcnccfortli will bc omittcd until the development reaches 

tho point where they can L .:vc a useful purpose. 

- 2 is the residual vector. 

observation vector. Y is the model ;.'>scrvation vector. It if9 Important to 

distinguish between Y and the measurement vector RJ . The elements m 
Q 

of It1 - are thc basic scalar measureincnts gcncrated by the onboard sensors 

and preliminary ground processing opcxtions, and are the primary inputs to 

the compositc altitude determination system. The elements y of Y a re  

the inputs to the estimation subsystem of the attituue determination system. 

is called the real observation vector or  just the 

' C  

- 

i -  

The elements yCi of the model observation vector Y 

values of y using a mnthematical model of the satcllite and its sensor sys- 

tern. Under ideal conditions, each y would be identical to its corresponding ci 
yi . The residimls z. between each y and y 

e r ro r  in the esiimatc of 5 . 

are the predicted 
'C 

f 

prcvide an indication of tlic 
1 i ci 

In most estini~tion sttidies, a distinction is not made ktween Y and RI . 
Also, Y 
Equntion (l3-Id). Tlic OXnlAS cstimation systcm is unorthodox in scvcml 

rcslwcts, I ~ o \ v c Y ~ ,  2nd tlic piirposc of lhc nlqurcnlly gencrrrl forlliat or EC~LI;I- 

ttons (n- lb) tlrrouglr (B-lcl) is to rriake tlic forthcoming dcrivation completely 

- - 
is not'normnlly considered to be n functioit of A I  as shown in - - C  

n-3 
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applicable to OXEMS. Thc niost unusuzl feature of O..\BlAS is that in several 

of thc scnsor nioclcls, y 
i 

through y ci 
The IGSS *unciio11 A of Equation (B-1) is a blcnd of the new mcnsurement data 

111 and the n priori stntc vector estinxitc S . I\' and S are weighting 

matrices whose fuiiction is to csLablis11 thc rclntive wights  to bc assigicd to 

the individual residuals I, 

The term "least squares" often is usee? to signify loss h c t i o n s  in which W 

is diagonal (son?ctiines with all diagonal elenicnts idcnticd) md/w S 
zero. The prcscnt dcvclopmcnt will not make eithcr of these restrictions in 

its early s t q p  .md, thus, cam be considered to be 3 generalizea least-squares 

is known exactly and the h1-dependcncg enters soicly 

h 

-0 0 - 
h and to LL ,date vector deviations & - x 

i rl otl ) . 

is 
0 

approach. 

W and S are assumed to be symmetric. l?w 1 to be mearsiqgful, both W 

and S must be nonnegative definite. The fwtfier restriction that W be 

positive defini*e usually is justified. A positive semidefinite W would imply 

measurement data to which no weight at all is to be attached. A positive 

scmidcfinitc S 

requires its invcrse is developed, A positive semidefinite S implies that 

the state vector contains components whose vdues are completely unlnotvn 

a priori. 

0 

0 

h 
is mcmingful and acceptable, unless an - X* algorithm which 

0 

0 

Estimation dgorithm derivations which employ a least-squares approach some- 

times assunic a priori that I V  is the inver.+;t: of the covariance matrix R 
of the c:*rors in tlic obsci-vntions or rcsiclunls .and lhnt S is the invcrsc of the 

covarimcc m:.trix of the umcrtahity in S . Thc prcsen, ;erivation, howcvcr, 

docs not s ! ! : ~  11 :Lay iicccs;S:>ry SX' 31 sigiiificmcc? to S and \V . I'hcy arc 

re~nl'tlctl only as ~wigl~liiig mntriccs anel arc siibji-ct only to the nintticninticnl 

0 
A 

-0 

0 
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-1 -I restrictions notcc! in thc above px-ngr:ipli. \V = R and S = I’ usiinlly arc 

considcrcd, without wrificnlioii, the optimal weighting conditions which make 

X* - , which satisfies thc generalized Icnst-squares criteria, truly the optimal 
estirnatc; IIc\rever, suclr stntisticai restrictions on W 3112 S are consiciered 

here to fall fuiidnmcntally outside of the basic least-squares mrrthcmatics. 

0 0  

A -  

0 

In principlc, a distinction should be made between thc sensor event times t 

and the tinic variable t which is included in Equntion (B-1). t is tHI ’ tHO 
intended here to signify thc time o r  times at which orbital or cphcmcris data 

is evaluated to gcneratc the Sun ,and centra! body reference information rccl-dired 

by the estimation system. Thcsc times are not ncccssarily identical to the 

telemetered sensor event times. For OABIAS application, however, tlic point 

is not a significant one, because the program does use the telemdtered sensor 

event times to generate the Sun and central body reference information. For 

this reason, the model observations y of all the OABIAS models are func- ci 
tions, to at ieast some extent, of the elements ’ t or t of hq - . In 
the interest of notational simplicity, the t- and M-dependcnce will not 5e 

shown explicitly in the remaining equations of this appendix. 

S ’  

’I ’ HI ’ HO 

B. 3 DERIVATION OF THE NONRECURQVE LEAST-SQUARES ALGORITHM 
A 

A necessary condition for - X * to be the estimate which minimizes the loss 

function 1 of Equation (B-1) is 

B-5 
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h A A 
Diffcrcnlialing I<quntion (B-1) with respect to , setting X to 

using I*:quation (D-2) yields 

03-3) 

The problem now is to derive a method for solving Equation (B-3) for - p*. 
The usual Newton-Rnphson procedure expands I.(?: -- *) in a Taylor ser ies  

about zo . A slightly more general approach will be employed here, however 

in order to obtain equations which can be used in the recursive estimator deri- 

vation. Instead, each element z. of g will be expanded in a Taylor series 

about an arbitrary reference to be denoted as X -Ri -Ri 
assumed to be identical to X nor to each other. They are assumed only to 

be sufficiently close to s* to partially justify the forthcoming series truncation. 

The Taylor series result can be placed in the following form: 

n 

1 . The p X I s  are not 
A 

-0 

. -  . 

A X* + H.O.T.(2* - 2  ) -Ri - Z ( X * )  = 1 - y,, f BR - Gn 
pxl pxl pxs (B4a) - 

where 
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and 

(B-4e) 
. byci T -  @ .I  (i = 1 to p) - 

‘Ri- a$ R1 .. 
5 x 1  

- 

The last c.sprcssion on the right side of Equation (B-4a) signifies higher order 

terms in the series. In addition to Equ?+:nr7 (B4a), the Taylor series e?cpmsion 

of the partial dcrivative of - 2 with respc 

be obtained by diffcrentiating Equation (B-4a). 

- g* is also needed. This can 

aZ = - G ~  + H.O.T. e* - X a2 -Ri (B-5) 

Substituting Equation (B-4) and (B-5) hto (B-3), dropping the hig? - -  order 

terms (11.0. T. ), and performing some minor algebraic manipulat yields 

Ttlc prcviously notcc? 1 subscripts which signify tknl tlic estimate is obtained 

from data set number 1 have k e n  inscrtcd into Equation (B-6) for convenience 

in futurc rcfcrciiccv to tlic cquntion. Also, thc opliinnl cstimnte wi l l  now be 

signified incre~y by 2 ratlier t1iaii by 
h . 1 L A &  siiiiplificatioii i s  being niaclc 

. .. 

I3 -7 
lb-) 
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bccniisc lhc * no iongcr s c r w s  a uscfiil purpose. illso, it brings thc current 

nolation into closer agrcctncnt with that coiiimonly used in Computcr Scienccs 

Corporation rcyo rt s . 
For the reni:tinder of this section, the \vorli can be restricted to thc case where 

all rcferencc vectors S arc idcntical; S = S where i = 1 to p . Equa- 

tion (B-1) shotvs that BIR - c:rn be rcplaccd by Cln Sln . 
Let Q 
Equation (B-6) possesses a unique sohtion if, and only if, Q, is nonsingular. 

-Ri -Ri -1R 

be the sxs coefficient matrix on the lcft side of Equation (13-6). 
1 

Assuming that both So 

sufficient condition for 

tive definite. Positive 

A 

and GT W G are at least positive semidefinite, a 1R 1 1R 
nonsingular Q, is that one or both of the pair be posi- 

'F 

definiteness of G1 CV G signifies that 5 is observ- 1R 1 1R 
able from the set 1 obsenations alone. Nonsingularity of Q 

by choosing So to be positive definite. 

In the nonsingdar Q 

result written as follows: 

can be assured 1 

h 
case, Equation (B-6) can be solved for ICl , and the 

1 

where 

T 
lp, 1 K l= P1 G W 

SXP 

-1 
P I =  Q, 

sxs 
T 

(B-?b) 

(I3-7c) 

(B-7d) 

' " I  



At this point in  thc dcvclopincnt, no spccinl signific:incc c m  be attnchcd to Q 

and P - thcy :ire incrcly convcnicnt inntriccs for iisc in thc cquntions. 
1 

1 ’  

Equation (13-7) constitutes a slightly gcneralizcd form of the usu:il nonrecursive 

least-squares algorithm. Whcn employing this equation for h t c h  proccssing, 

the rcfcrincc vcctor s normally is set  equal to thc a priori cstimatc s . -lR -0 

This enables t h e  C matrix on the right sidc of Equation (13-74 to be dis- 

carded. It will be recalled, however, that when deriving Equation (13-7)’ it 

was necessary to truncate the higher order terms of Equations (B-4a) and (13-5). 

Thus, the ? 

n 

i ii 

1 result of Equation (B-7a) will minimize the loss fucction A -1 
h 

’ defied by Equation (B-1) only when X is sufficiently close to X (now 
A -1 -Xi 

= S ) that tlic error due to discarding the higher order terms is negli- ‘lR -0 

gibly small. An iterative proccssing operation, called differential correction, 

commonly is performed to overcome this difficulty. With this technique, data 

set 1 is passed through the processor several times. The state vector esti- 

mate obtained in any given pass becomes the a priori estimate for the following 

pass. In order to delineate the operation mathematically, let superscript X 
denote the Xth pass through the processor. Equation (B-7) then can be con- 

verted to the following form: 

x AA-1 
= 1’ G ) \VI 1 1 

+ 1-1 
T Q, x = S o  + C1 (s fi1-l ) brl GI ( A l  ) 

(B-SC) 

I3-3 
.. c . -  



and 

A0 A *  

-0 
x = s  - 

The proccss is said to have convcrgcd whcn thc clcnicnts of A?' become 

negligibly small. The iterative operations tend to dcgradc the meaning &urd 

uscfulness of S . Equations (B-Sa) through (B-8f) are equivalent to those uscd 

by GCONES, except GCONES does not include . S . 

-1 

0 

0 

B.4 DERIVATION OF A PRELIMINARY RECURSIVE LEAST-SQUARES 
ALGORITI 131 

Thz preliminary recursive least-squares algorithm derived in this section is 

not the algorithm used in OABL4S. However, it is a necessary by-product in 

the present derivation of thc OAEL4S equation and is of some significance in its 

own right. 

Assume that dnta set I has been processed, iteratively o r  noniteratively, and 

that the f ind results ^x aiid P1 of Q have been saved. Let data set 2 now 
-1 1 

be received. Set 2 contains q scalar observations (q 2 1) . Let the data set  

which is comprised of both sets 1 and 2 be denpfed as set c. Set c contains 

r = p + q scalar observations where r z 2 . The problem now is to obtain a 

new estimate 2 ; the subscript 2 

signifies that the estimate employs all data sets  up to and including set 2. The 

batch processing npproclch to tlic p r o l h i i  would process the composite set c 
in the sniiic way thnt sct 1 i\.aS processcd. With appropriate chnnges in sub- 

scripts, the cquntions developed in Section 13.3 are applicable to this method. 

In cssciicc, tlic inelhods iniiiiiiiizes a loss ftiiiction 

utilizing all the observations in set 
-2 

defined by c * 

rxr rxl  

13-10 



(B-9b) 

(B-9c) 

The major dra\vback of this  approach is tbat the resulting :!gorithm [Equa- 

tion (13-7) o r  (13-8)1 with appropriate chnnges in subscripts) includes vectors 

and matrices with diniensions equal to the total number of scalar observations r 

in set c . This increases the computation and storage requiremecks. If the 

approach is continued when additional data sets come in, thesc requirements 

will increase withot t bound. 

The recursive processing approach to the probl ?m uses only the  new observa- 
\ 

tions x2 and the results 9 and P o r  Q 

With thesc approaches X is the estimate which minimizes a loss function J? 

defined by 

obtained from processing set 1. 

2 

-1 1 1 
h 

-2 

i 

sx 8 
. . _ _  

As will bc shown lntcr in this ac t ion ,  tlic recursive processing approach 

rcquircs that \\I = 0. 'Compnrison of Equation (I3-10) with the loss function 

1 of Equation (I3-1) indicates that the batch processing equations developed 

in Section D. 3 arc qqdicablc to this casc with npproprjntc chnngcs in subscripts 

awl t h i s  constitutc a vnlitl rccursivc proccssiiig ;iIgorithiii. IIo\vcvcr, tllc 

problciii of sclccting S remains. Arbitrary sclcction of S indcpcndcat 

of S , is uiitlcsir:tblc, A bcttcr ;ippronch is to cstaiilish S such that the 

12 

1 

1 1 '  

0 1 

D-11 



X 
-2 
ditioiis) to llrc cstiiii:ilc obtained using tlic lx~tch proccssing technique which 

co!-.iputctl by the rcciirsisc mclhod i s  identical (at lcast urrtlcr ccrtain con- 

An algorithm for computing S1 as n function of S i s  C '  0 
minimizes d 

iieeclccl. The rcmaindcr of this section i s  desotcd to this problcm. 

The derivation starts with I<quatioii (I3-G). Altc ring the 1 subscripts to makc 

the cquntion applicable to set yields 

where 

GCR = b T  1R GT 2R 1 

lV2 '1 

(B-12a) 

(B-12b) 

(B-1%) 

(€3-1 2d) 

- (B-lze) 

1' 

l3-13 



For use below, let the corresponding sct  1 equation 03-6) be rewritten in the 
following foriii: 

Equation (B-11) now is written in  i ts  full form by inserting Equation (B-12). 

Performing the matrix multiplications in Equation (B-14), canceling identical 

X 
-0 

h 
terms where possible, and rearranging the result slightly yields 

h 

[so + G:~wl'l~ + ':R W2C2R + G:Rw12G2R + '2R WTG 12 lR] '2 

. 

Devclopnisnt of a recursive algorithm requires elimination of terms involving 
n 

so , , Y c l n  , and QIR from Equation (I3-15). The terms within the 

first set of brncl;ets on the right side thus are unacceptable. These, however, 

are ideiiticnl to the right sidc of I3pntioii (l3-13) and hcnce can be rcplaced by 

thc left side of (D-13). The remaining uilncceptablc terms in Equation (T3-15) 

are those iiisitlc the second set of brackets on the right sidc. These involve 

the co\ipliiig iiiat rix \Ir 

rilhm, W 
. To obtnin tlic dcsircd rccursive processing algo- 

must be restricted to zero. 
12 

12 
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A restriction that all reference v x t o r s  S -2Ri in set 2 a re  identical 

(s2ni = Szn * where i = 1 to q) now is accept.tblc. This enables E,, to be 

replaced by Gznszn  . The concept of nonidentical reference vectors was a 
matheni;lticnl tool used to avoid the restriction that the same Tailor series 

expansion rcferencc vcctor be employed for  both set 1 and set 2. The tool now 

has served its purpose in the dcrivation and is no longer necessary.- 

The desircd recursive processing algorithm is obtained by implementing the 

above-noted operations into Equation (B-15) and performing a few minor 
additional algcbmic manipulations. The result is 

where 

sx q 

K2= p2 G2R T W  2 

sx s 

P2 = $1 

sx s 

Q l = s ~ + G I R  ' W G  1 1R 

(B-16b) 

. _  
(B-16~) . 

(B-l6d) 

Q 

(B-17) 

Equations (B-7) and (B-16) constihito n valid method for processing data sets 

1 NKI 2 sequcntinlly. They can, hi f:ict, be gciicrnliLetI immcdintely for 

scqucntinl proccssing of .an nrbitrnry number of tlntn sets. Beforc doing lliis, 

however* it is dcsirablc to answer the pi-evious question concerning the 

corrcct \veightiiig factor S for Ikpntion (B-10). I t  should Fc evident that 1 

I3-1.1 



A 
direct use of Ilqunlion (B-10) to derive an optinid estimate 2 
S 

from the E 

and 1, respectively. Equation (W7d) would now be 

with X and 
-2 -1 

as the a priori inputs would yield results idcntical to Equation (B-7) obtained 1 
equation, exccpt tlic 1 and 0 subscripts would be replaced by 2 1 . .  

m 

Q 2 = s 1 + G i R  W 2 G 2R (B-18) 

The r?sults obtained frcm Equation (B-10) should be identical to those of Equa- 

tions (13-16) and (B-17). Comparing Equation (B-18) with Equations (B-1Gd) 

and (B-l?), it is concluded that 
. - - . .  

Sl=Ql = S  o +GT 1R W 1 G 1R (B-19) 

Equation (B-19) is the desired equation for updating S to obtain S . It is 
0 1 

evident that this result can be extended to yield Sz = Q2 , S, = Q, , etc. 

Because the variables Q can be replaced by S , their use  bas become super- 

fluous. Also, superscripts 2 and 1 of Equation (B-16) can be replaced by more 

general ones j and j - 1 Therefore, the final recursive processing equations 

of this section are 

- .. 

(B-2 Oa) 

(B-201)) T K = P  G. W 
j 1 1 R j  

-1 I' = s  
j j  

(D-20c) 

,e.' 

D-15 
,..: 

(B-2Od) 
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Equation (B-20) or  the equivalc~it trsually is considered to constitute B poor 

recursive proccssing nlgorithm becausc tlic invcrsion of nn s?: s nintrix is 

requircd at cach stcp. They are not uscd in OXBIAS and hence constitutc onIy 

an interincdiatc rcsult in the prcsent dcwlopment. 

In derivirg the OAPLIS algorithm, Equations (13-2Oc) and (B-20d) first are 

combined into 

Equation (B-20) now is manipulated using thc followillg matrix identity 

with A = E j -1 

The rcsult is 

-1 
; [A-' + BC] = A - AB [I + CAB]-' CA 

. 

n-16 
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Idow asstme thnt \V, i s  nonsingulnr and ritnnipulnte thc term within the br:wl;cts 
J 

using the matrix identity 

-1 
D-l W = [W-l D] 

The result is 

(B-24) 

Equation (€3-25) now is substituted into Equation (E-20bi to give 

To finish tlic ckrivnfion, Equatioa (B-PG) is substit:,kd into Equation (13-25) to 

simplify thc cquntion for P. . Thc find equations for the LB;V processing 
J 

algorithm w e  

P = [ I 4  c; I P  (13-"7c) J j j l l  j-1 

B-17 
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Assuniing that W is p:tsstlcl to the rccursi;-e processor, a processor which 
j 

eniploys Equation (13-37) must in? ert tbvo p.xp. nintriccs in each processing 
1 1  

step j , ivt::re p, is the nunibcr of scn1:wobservritions o n  set j . Only one 
-1 J 

p.xp. matrix inversion is nccdcd i l  ..le processor is given 1'2 . ilowevcr, 

the observaiions c;in be proccssed one at a time in applications w h e w  311 

off-diagonal elemmls W , where f l  # v , of the ivcighliny: matrix' W, can 

be made zeru. This ntethod avoids matrix i, 2rsions and niinimize,c computer 

storage requirements. Assuming the observations to be processed or e at a 

time enables Equation (B-27) to be conrorted into the following form 

I 1  j 

ccu z 

sx 1 

P = [ . t s - K  -j - jR G T ] P  j-1 

sx s 

(€3-28~) 

(B-28d) 

Vnlike the otlicr equstions of this appendix, J<qu,itions p-283) through (13-280 

have bcen nrranged into n possible sequcnce for uttlizatian in  a computcr 

routit*-. l'li..sc cqu:ltions ilrc thc end rcsuil ol this appendix and PIT iho bcsiz 

rcciirsivt? c*sti:ii:i;ion etpntiotis used in 0Al;J.U esccpt lor implcr,rcnl modiIicn- 

lions di:-xw~scd in '. 'i ion 3.4.  
\ *  

Li-1 ti 



The symbols most coiiiiiionly uwd in this docunieiit a r c  listed bclo\v. Rcfcr- 

enccs arc provided to figircs o r  equat ions in wliich syiiibols a r c  defincd \vhen- 

evcr such figures or cquntions occur. Thc most coiimon superscripts, 

subscripts, a! ovcrhcqd syniLo!s a rc  listed at the end of tlic glossary: 

S\.mbOl Definition 

A 

Ad 

A& 

Ad6 

*d8 

A 
PV 

B 

BI 

BO 

-Dn 
BOT 

A 3 X 3 matrix which transforms vectors from 
frame GX resolution to frame SC resolution 
(rc:ference Figure 3-1) 

A dihedral angle 

The Model 5 dihedral rxgle (reference Figure 3-10) 

The Model 6 dihedral angle (reference Figure 3-11) 

The Model 8 dibedral angle (reference Figure -13) 

The elements of A 

A symbol used to indicate either B or Bo in equa- I tions that are apglicable to both 

A 3 x 3 matris which transforms vectors from 
frame HI' resolution to frame SC resolution (refer- 
ence Figure 3-1) . 

.. 

A 3 x 3 mntris which transforms :vxtors from 
frainc 110' rcsolution to fnmc  SC resdiition (refcc- 
encc Figurc 3-1) 

Dcfined in Equation (I3-4d) 

d5 ' The ticnotiiiixtlors in tlic cquntions for tan A 

dS tall .A dG , or hn A 

b 
PV 

Thn elciiicnts cf I3 

G-1 
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Sym bo1 Dc f in it ion 

Cosine c .  

h 

D 
A A 

A SjmbGl used to i~~dtcntc  cithcr DI or DO in equa- 
tions that arc  applicnl>!e to 50th (refcrcncc Figure 3-9) 

The unit vcctci- directed from thc spacecraft toward the 
horizon-in crossing point on t h c  central body surface 

A 

DI 

h 

DO The unit vector directed from thc spacecraft toward the 
horizon-out crossing point on the central body surface 

Det The determinant of the 2 x 2 m a t r b  in Equation (3-722) 

Det h1 The determinant of M 
h 

The componcnts of D dong the axes of frame GI 

Tt . . :ector of the errors  in a set of measurements E dRI 

dm a The e r ro r  in element m of 

The vector of the errors  in a set of observaticns Y c 
ac 

dY - 
dyj 

The error inelement y. of y' 
3 

E The angle generated by Sun sensor misalignment 6 

(reference Figure 3-10); also, expectation operator 

h e A symbol used to signify a unit vector along an axis of 
2 refcrence coordinate frame 

h e 
a 

See Figure 3-9 

~ h n  
c' s1' cs3' 

The unit vectors a!ong thc nscs of frame SS 

The unit vcctors along :he axcs crf fr.mc GI 

Thc unit vectors along the ascs of fram2 SC 

Thc '.nit vcctors dong thc nscs of frame HI 

'lm unit vwtors  along t.hc XYCS of frame I10 
!. 
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FOV 

G 

G. 
-J 

GI' 

GI 

H 

HI 

HI' 

HO 

HO' 

H. O.T. 

h 

h 
9 
h b 

Dc fi 11 it ion 

Field of vicw 

The p:irlinl derivativc ~n:itrix of coniputcd observation 
vector Y with rcspcct to stntc vector . 

The par t id  derivative vector of computcd obscrvation 

-C 

yc, with r c s p x t  to state vector S ; the jth coiumn 
of GT 

The geocentric incrtid frame (usually the true-of-date 
framc); xGI directed toward the vernal equinox of epoch, 
ZGI directed toward thc celcstinl north pole of epoch 

The geocentric inertial frame used internally in OABIAS 

The partial derivative of computed observation pc with 
respect to x ; the f lh  element of G, 

The partial derivative matrix of observation vector 
with respcct to measurement vector M - 

t7 

The horizon detector line-of-sight f r m e  for in-crossiugs 
z 

A 
along LI (reference Figrcs 3-1 and 3-5) HI 

The horizon detector alignment frame for in-crossings 
(reference Figure 3-1) 

The horizon detector line-of-sight f r m e  ror out- 
crossings; z along I, (reference Figure 3-1) 

The horizon dztector alignment fr.une for out-crossings 
(rcfcrencc Figurc 3-1) 

" 

A 

HO 0 

Higlicr ordcr terms 

I 

G - 3  



The unit vcctors along the ascs of framc SC 

K’ I<, 
1 

Tlic g;iin iii.ltris of an cstimstion algorithm 

!sj 
A 

L 

L 
A 
L 

1 

The p i n  vector of til? estimntion nlgorillim used in 
OABIAS 

The vector from the spncccrnft to the horizcn crossing 
point (refcrcncc Figure 3-14) 

A 

The magnitude of L 

The unit vector directed along L 
z 

The least-squares loss function [reference Equa- 
tion (B-la)] 

-. 
1 The components of L along the axes of frame GI ‘1GI’ *2GI’ 3GI 

1 1 The components of L along the axes of frame SC llSC’ 2sc’ 33c 

M - 
M 
-j  

m - 

l?? 
CY 

m 
kY 

n h  

%I’ 5 0  

A matrix whose three rows are the components of the 
three vectors g, fz , and fi 
axes of frame GI 

respectively, along the 

A vector composed of a set  of scalar measurements 
u 

A subvector of M - 
A vector composcd of thc four n.tasurements (eAI , 

and t providcd in 8 singlc tclcnietry frame ’ tI*I ’ I!O 

An element of AI - 
An clcnicnt of 31. 

-1 

Thc unit vcgctors nlong !lie y axes of fr,mcs HI .md 
IIO (rc*fr!rcncc Figure 3-9) 

The unit vcctor nlong thc y nsis of frnmc SS (rcfcr- 
ciicc 1:igilrc. 3-4) 

,/‘ 
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Sv m bo I Dcfinition 

The components of 2 dong the ases  of frame GI 111~1' " 1 1 2 ~ 1 ~  "KCI H 
n 

h 
The componcnts of N dong tlie axes of frame SC HlSC' nIIPSC' 'IISSC If n 

A 

nl* n2' ng The coinponc~its of N along tlic axes of frame GI 
s .  

P 

P 
0 

PI* P2 

Q 

ql* Q2 

e 
R 

E 
e 

h 

e 
R 

Rhl 

A matrix generated in the estimation computations; usu- 
ally considcred to be the estimated covariance matrix 
of the  e r ro r  in S - 
The a priori P matrix 

Defined in Equations (3-7% and 3-75d) 

The inverse P-' of the estimated cov2riance 
matrix P of a state vector estimate X 
me co~umns of the inverse M-' of the 3 x 3 matrix M 

-~ 

Defined in Equations (3-75e) and (3-756 

The vector from the spacecraft to the center of the cen- 
t ral body - -  The magnitude of R 

-L 

The unit vector oriented in the directioi of R 

Radius of the Earth (reference Figure 3-14) 

Thc vcctor from tlic cciitcr of the central body to the 
effective horizon crossing point (reference Figire 3-14) 

A 

The trnit vcctor in tlie direction of R 
ure  3-14) e 

(refcrcncc Fig- 

Thc cwariancc mi t r i s  of n SCL of measurements 

I 

(3-5 



Sy m Im 1 

0 
S 

s1 

sc 

SI 

ss, ss 

S 

T (si) 
a! 

TOP 

Dc fi ni t io n 

The covariance matris of a sct of obscrvntions 2 

M The jlli element on the dingonnl of R 

The componcnts of along tlic 3ses of frame GI 

The components of 6 along the ascs of frame GI 

The unit vector along thc spacecraft spin axis 

1 The weighting matris in least-squares loss function R 
[reference Equation (B-la)] 

2 The weighting matrix in least-squares loss function 1 
[reference Equation (B-lo)] 

The spacecrft-fised reference frame; zsc along S 
(reference Figure 3-1) 

A 

The inertial frame with zs. along .s (reference Fig- 
ure 3-1) 

The Sun sensor-fixed reference frame (reference Fig- 
ure 3-1) 

Sine i 

h 
The componcnts of S along the axes of frame GI; 
s and s2 are elcmcnts x and x of 5 1 1 2 

A 3 x 3 matris which transforms vectcr componcnts 
fro.3 the ascs of an initial framc, a , to thosc of a T;CIV 

framc, b , whcrc frnmc b is gciicratcd by rotnting 
framc a about onc of its ases (s. = x , ya , or z ) l a  a through nn mglc or 

d(i ' Thc inimcmtors in the cquntions for tan A 
tan A 

tnn A 
d5 ' 

d? 

Tiinc 

C-G 



Sy nr I)o 1 

€I 

€11 

tHO 

t. 
J 

t 

t 

0 

3 

6 

u' u' u' 1' 2' 3 
a 
V 

V 
1 
W 

h 
S* - 
S -R 
S -s 

A 
S 
-0 

Definition 

The tinrc nt  wviiich a horizon crossing, in a r  out, is 
cncowtc red 

The time at which a horizon-in crossing is encountered 

Thc time nt which a horizon-out crossing is encountcrcd 

The time at  which an observation j was obtained 

The initial o r  reference time 

The time at which a Sun sighting is encounter d 
_.. 

The unit vector along the Sunline (reference Figure 3-4) 

The cornponcnts of 6 along the axes of frame GI 

h 
The components of U along the zxes oi frame GI' 

The velocity vector of the spacecraft center of mass 

The e r ro r  in observation j 

The observation weighting factor matrix 
' 

The weighting factor for observation j % 

The optimum value of w. [reference Equation (3-11)l 

The truc state vecior 
_---- -. J 

Thr ,imnto of 

The optirnnl estimate of X - 

I'hc sul~vcctor of ,S composed of the Sun scnsor bias 
pnrnni ct c 1's 

L 

Thc a priori i v t  inr:itc of S - 

G-7 
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s\*m bo 1 

Y - 
1- 
'C 

'j 

YCj 

2 

2 
J 
d 

a' 

Y 

ys' ys 

AH 

As 

At 

LY 
- j  

Dcfinition 

A vcctor of "rcnl" olscrvations coniputcd dgcbraically 
from a vector R,I 'of nicasurenicnts . 

A vcctor of "computccl" observations oblaincd using n 
mnthcniaticnl nioctcl ;ind an cstimntc of thc system's 
state vcctor -I' 

Thc jth element of Y - 
The j th  clement of 

The vector of residuals; 2 = Y - Y 
The jth element of - 2 
The right ascension angle of S relative to frame GI 

The right ascension angle of S relative to frame GI' 

-C - -  

n 

n 

A 
The angle between 3 and U (reference Figure 3-4) 

The angle measured by the Sun sensor; ideally identical 
to 6 (refercncc Figure 3-41 

h A 
The angle between L and S (reference Figure 2-3) 

A 
The angle of horizon detector li. 1-of-sight vector L 
relative to the detector's reference axis 2 
identical to y (reference Figure 2-3) 

; ideally H' 

The pcrturbntion in  dihcdrnl mglc Ad duc to horizon 
dctcctor misalignment ,mglc c (referericc Figure 3-10) 

Tfic pcrturbnlion i n  dihcdral mglc Ad due to Sun scn- 
sor misaligmcnt nnglc c (rcfcrcnct. Figure 3-10) 

H 

A time bins in thc location of the spacecraft in ils orbit; 
slcincnt s of S - 12 
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AY 

6 

61 

77 

A 

x 

0 
x 

U 

nc fi n i t ion  

Thc bins i n  S L I ~  mglc nieasurcmcnt; clcnient x of S 
. 8  - (rcfcrcncc Figitrc ,3-4) 

The horizon dctcuctor nlipincnt error ;  clciiicnt x of 
X - (rcfwcncc Figurc 2-3) 4 

A bias in thL cffcctivc angular radius p of thc ccntrnl 
body; element x 

The bias on horizon detector azimuth angle I$ 
horizon-in crossings 

of S - 
7 

at H 

The bias on horizon detector azimuth angle @ a t  
horizon-ou t crossings 

The declination angle of S relative to frame GI 

The declination angle of S relative to frame GI' 

H 

A 

A . 

The a priori value of 6' 

10 
The alignment e r ror  of the Sun sensor; element x 
of (reference Figure 3-4) 

The alignment e r ror  of the horizon detector; element 
x of ,X (refcrence Figurc 2-3) 

The angle between horizon crossing vector D and hori- 
zon detector reference axis ^N (reference Figure 3-9) 

11 
A 

H 
Thc Sun sensor FOV value (reference F i p r c  2-1) 

90-6 (rcfcrcnce Figurc 3-10) 

The Intitudc of thc horizon crossing locnlion on the cen- 
t r n l  body surfacc 

Thc groccntric 1:ititudc of thc spacecraft; i i i it inl csti- 
mntcof X 

A h  A h  
Thc nnglr I~ctwccn S-D planc and D-li pl:uic (rcfer- 
cncc I~igurc 3-1 .?) 

c . t  u- J 
".-. . . 
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P 

pC 

9 
2 
=H 

2 

2 

U 
mja 

Os 

2 

2 
Oy1 

2 
Y 
U 

7 

Definition 

The clcvntion mounting nnglc of thc  Sun scnsor rclntive 
to the plane pcrpcntlicular lo the spacecraft's spin asis 
(rcfcrcncc Figurc 2-1) 

The elevation angle of the Sun relative to the Sun sensor 
(reference Figure 2-1) . 

The angular radius of the central body at the horizon 
crossing paint as seen from the spacecraft (reference 
Figurc 3-8) 

The computed value of p 
A A  

H - R  S ZJcWt 

The variance of the e r ror  in the horizon crossing time 
measurements 

The variance of the e r ror  in measurement m 

The variance of the er ror  in the Sun sighting time meas- 
urements 

ia 

The variance of the e r ror  in an observation yj  

The variance of the ergor in the Sun angle /3 
urements u 

meas- M 

The variance of the e r ror  in the measurements of the 
panoramic horizon s c m c r  angle y 

The instnntnneous anglc bctwccn U and the Sun scnsor 
axis y (rcfcrcncc Figurc 3-4) 

Thc instnntnncous rotation nnglc of thc sp5,ccraft in  its 
spin cyclc (rcfc-rcncc F i p r c  %:;) 

S 
h 

ss 

Tlic aziiiiutli nlignnicnt rink: Iwlwccn 1 .c Sun scns~ir nnd 
tlic horizon tlclcclor 

I '  

I1 Thc noillinn1 v:lluc of I? 

G- 10 
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I 
0H 

0 
011 

x 

@O 

Superscript 

GI, GI1, etc. 

I 

0 

T 

x 

De fi n i t ion 

The clfcctivc value of 
mcnt x of X - (rcfcrcncc Figurc 3-5) 

at horizon-in crossings; cle- 

5 

The effective whie of 8 
clcnicnt s of S 

U - S  secant Q 

at horizon-out crossings; 
11 - G 

& A  

Thc rohtion ,angle of tlic spacccraft in  its spin cyclc at 
reference time t ; element x of 25 

The spacecraft's angular rate about its center of mass; 
elentent x of 5 

' 9  

0 3 

Definition 

Signifies components of vectors along the axes of coor- 
dinate frames GI, GIt, etc, 

Signifies a parameter associated,with a horizon-in 
crossing of the horizon detector 

Signifies a parameter associated with a horizon-out 
crossing of the horizon detector 

Signifies the trans-mse of a matrix or  of a column vector 

Signifies a parameter associated with the Xth iteration 
in T i iterative processing operation 

Signifies an optimal quantity or estimate 

Subscri IX Dcfi nit ion 

c ,  c Significs coniputcd 

f Sign if ic s f inn 1 

GI, GI', ct llsctl with s , y , z , or 1 , 3 , 3 to signify tlic nscs 
of tlic inrlicnlctl cooriliualc fI';irii c: 
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Subscript 

I, HI 

H 

M, m 

0, HO 

0 

R 

1 

2 

-t 

Ijc fi nit ion 

Si'gnifics a par:inictx associated with a horizon-in 
crossing 

Sigiifics 8 pnrnmctcr associated with n horizon cross- 
ing; usually usccl \vi tli syiiibols tlmt a rc  applicable to 
both horizon-in nnd horizon-out crossings 

Usually signifies a paramcter associated with thc proc- 
essing of observation data set I' o r  scalar observation -3 
yj 
Signifies measured 

Signtfies a parameter associated with a horizon-out 
crossing 

Signifies an a priori o r  initial value 

Signifies a parameter computed using 

Signifies a parameter associated with data set  1 in 
Appcndix B 

= ?( -R 

Significs a parameter associated with data set 2 in 
Appendi-i B 

Signifies the combination of data sets 1 and 2 and 
parameters associated with this set  in Appendix B 

Signifies I parameter computed using the plu:: sign in 
Ec!c:itkn (3-78) 

DcM n i t I on Overlicnd Symbols - 

h 

Signifjcs a C:irtcsi:iii vcctor of arbitrary lcnglh 

Sigiiifics n C:irlcsi:in vcclor of unit length; also, signi- 
fics a coniputcd or cstitiialcd wriablc 
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